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Abstract several factors indicating that further study is necessary

In this paper we present the analysis of two large-scaléo aid future network file system designs. First, no ma-
network file system workloads. We measured CIFS trafjor study has been conducted of CIFS (Common Inter-
fic for two enterprise-class file servers deployed in thenet File System) [13], the network file transfer protocol
NetApp data center for a three month period. One fileused by Windows. Second, the last major trace study [5]
server was used by marketing, sales, and finance dexnalyzed traces from 2001, over half a decade ago; sig-
partments and the other by the engineering departmenmificant changes in the architecture and use of network
Together these systems represent over 22 TB of storagdorage since then have resulted in changes in workload.
used by over 1500 employees, making this the first evehird, no published study has ever analyzed large-scale
large-scale study of the CIFS protocol. enterprise file system workloads, focusing instead on

We analyzed how our network file system workloadsresearch-type workloads, such as those seen in the uni-
compared to those of previous file system trace studiesersity settings often available to systems researchers.
and took an in-depth look at access, usage, and sharing In this paper, we examine two real-world, large-scale
patterns. We found that our workloads were quite dif-enterprise network file system workloads, collected over
ferent from those previously studied; for example, ourthree months from two network file servers deployed
analysis found increased read-write file access patternin NetApp’s data center. One server hosts data for the
decreased read-write ratios, more random file access, andarketing, sales, and finance departments, and the other
longer file lifetimes. In addition, we found a number of hosts data for engineering departments. Combined, these
interesting properties regarding file sharing, file re-usesystems contain over 22 TB of actively used storage and
and the access patterns of file types and users, showiraye used by over 1500 employees. The analysis of our
that modern file system workload has changed in the pastace data focused on: (1) changes in file access patterns
5-10 years. This change in workload characteristics haand lifetimes since previous studies, (2) properties of file
implications on the future design of network file systems,|/O and file sharing, and (3) the relationship between file

which we describe in the paper. type and client access patterns.
Our analysis found important changes in several as-
1 Introduction pects of file system workloads. For example, we found

that read-write file access patterns, which are highly ran-
Network file systems are playing an increasingly impor-dom, are much more common relative to read-only and
tant role in today’s data storage. The motivation to cenWrite-only access patterns as compared to past studies.
tralize data behind network file systems has been driveNVe also found our workloads to be more write-oriented
by the desire to lower management costs, the need to relfhan those previously studied, with only about twice as
ably access growing amounts of data from multiple loca-many bytes read as written. Both of these findings chal-
tions, and is made possible by improvements in procesdenge traditionally-held assumptions about access pat-
ing and network power. The design of these systems iéerns and sequentiality. A summary of our key obser-
usually guided by an understanding of file system work-vations can be found in Table 1.
loads and user behavior [12, 19, 25], which is often ob- In all, our contributions include:
tained by measuring and analyzing file system traces. 1) The first published study of CIFS workloads.

While a number of trace-based file system studies hav@) A comparison with past file system studies.

been conducted in the past [3,5, 21,24, 29], there ar8) A new study of file access, I/0 and sharing patterns.
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| Compared to Previous Studies

. Both of our workloads are more write-oriented. Read tdenliyte ratios have signifcantly decreased.
. Read-write access patterns have increased 30-fold/eetatread-only and write-only access patterns.
. Most bytes are transferred in longer sequential runss&hens are an order of magnitude larger.

. Most bytes transferred are from larger files. File sizesugrto an order of magnitude larger.

. Files live an order of magnitude longer. Fewer than 50%lealeted within a day of creation.

| New Observations |

. Files are rarely re-opened. Over 66% are re-opened omc@% fewer than five times.

. Files re-opens are temporally related. Over 60% of rexspecur within a minute of the first.

. A small fraction of clients account for a large fractionfitd activity. Fewer than 1% of clients account for
50% of file requests.

9. Files are infrequently shared by more than one clientr@6&s of files are never opened by more than one clignt.
10. File sharing is rarely concurrent and sharing is usuatyl-only. Only 5% of files opened by multiple clients
are concurrent and 90% of sharing is read-only.

11. Most file types do not have a common access pattern.
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Table 1: Summary of observationsA summary of important file system trace observations frontrage analysis. Note that we
define clients to be unique IP addresses, as described ifp8ect.

4) An analysis of file type and user session patterns irdistributed throughout the name-space, and also how file
network file systems. system contents change over time.

5) A discussion of the significant design implications de-
rived from our study.

2.2 The Need for a New Study

2 Background Although there have been a number of previous file sys-

tem trace studies, several factors that indicate that a new
In this section, we discuss previous studies, summarizegtudy may aid ongoing network file system design.
in Table 2, and outline factors we believe motivate theTime since last study. There have been significant
need for new file system analysis. In addition, we pro-changes in computing power, network bandwidth, and
vide a brief background of the CIFS protocol. network file system usage since the last major study in
2001 [5]. A new study will help understand how these
21 Past Studies changes impaqt network file system workloads. _

Few network file system studies.Only a few studies
Early file system studies, such as those of the BSD [21]have explored network file system workloads [3,5, 22],
VAX/VMS [22], and Sprite [3] file systems, revealed a despite their differences from local file systems. Lo-
number of important observations and trends that guide@al file systems workloads include the access patterns of
file system design for over two decades. In particularmany system files, which are generally read-only and se-
they observed a significant tendency towards large, sequential, and are focused on the client’s point of view.
quential read access, limited read-write access, burstyhile such studies are useful for understanding client
I/O patterns, and very short file lifetimes. Other studiesworkload, it is critical for network file systems to focus
uncovered additional information such as file size dis-on the workload seen at the server, which often excludes
tributions [18, 26] and workload self-similarity [10]. A system files or accesses that hit the client cache.
more recent study of the Windows NT file system [29] No CIFS protocol studies.The only major network file
supported a number of the past observations and trendsystem study in the past decade analyzed NFSv2 and
In 2000, Roselliet al. compared four file system work- v3 workloads [5]. Though NFS is common on UNIX
loads [24]; they noted that block lifetimes had increasedsystems, most Windows systems use CIFS. Given the
since past studies and explored the effect on cachingridespread Windows client population and differences
strategies. The most recent study, in 2001, analyzed NFBetween CIFS and NFS(g, CIFS is a stateful proto-
traffic to network file servers [5], identifying a number col, in contrast to NFSv2 and v3), analysis beyond NFS
of peculiarities with NFS tracing and arguing that path-can add more insight into network file system workloads.
names can aid file system layout. Limited file system workloads. University [3,5, 10,

In addition to trace-based studies, which analyze file21, 24] and personal computer [2, 4, 32] workloads have
system workloads, several snapshot-based studies habeen the focus of a number of past studies. While use-
analyzed file system contents [2,4,7,8]. These studieful, these workloads may differ from the workloads of
showed how file attributes, such as size and type, areetwork file systems deployed in other environments.



\ Study | Date of Traces FS/Protocol Network FS  Trace Approach Waklo |

Ousterhoutet al.[21] 1985 BSD Dynamic Engineering
Ramakrishnaret al.[22 1988-89 VAXIVMS X Dynamic Engineering, HPC, Corporate
Baker,et al.[3] 1991 Sprite X Dynamic Engineering
Gribble,et al.[10 1991-97 Sprite, NFS, VXFS X Both Engineering, Backup
Douceur and Bolosky [4 1998 FAT, FAT32, NTFS Snapshots Engineering
Vogels [29] 1998 FAT, NTFS Both Engineering, HPC
Zhou and Smith [32] 1999 VFAT Dynamic PC
Roselliet al.[24 1997-00 VXFS, NTFS Dynamic Engineering, Server
Ellard, et al.[5] 2001 NFS X Dynamic Engineering, Email
Agrawal,et al.[2] 2000-2004 FAT, FAT32, NTFS Snapshots Engineering
Leung,et al. 2007 CIFS X Dynamic Corporate,Engineering

Table 2: Summary of major file system studies over the past two decaBeseach study, we show the date of trace data, the file
system or protocol studied, whether it involved networksfiistems, the trace methodology, and the workloads stuBigdamic
trace studies involve traces of live requests. Snapshoetstudies involve snapshots of file system contents.

2.3 The CIFS Protocol neering environment. A small number of clients also ran
Mac OS X and FreeBSD. Both servers could be accessed

The CIFS protocol, which is based on the Server Mesy, 01 5 Gigabit Ethernet LAN, a wireless LAN, or via
sage Block (SMB) protocol that defines most of the f|Iefa remote VPN

transfer operations used by CIFS, differs in a number o Our traces were collected from both the corporate and

e e st 0" engineering e servers betwen August 100 and De:

)t/,t ful ) ID‘ 4 file handl P ki | cember 14th, 2007. For each server, we mirrored a port
on statetul session 1LUs and Tlie handies, maxing analyy, , i network switch to which it was connected and at-
sis of access patterns simpler and more accurate than

. ) . ) fched it to a Linux workstation runnings pdunp [28].
NFSv2 and v3, which require heuristics to infer the starte. o CIES often utilizes NetBIOS [1], the workstation

ﬁ?hde?n?O(z;igI?C\(I:VZS;e[ﬁ]év'zl?&?Q;;S;gﬁ;ggt?é;romrecorded all file server traffic on the NetBIOS name,
P ' ._datagram, and session service ports as well as traf-

o "8c on the CIFS port. The trace data was periodically
and other yvorkload charactgnsucs observed by Fhe f'k.acopied to a separate file server. Approximately 750 GB
server are influenced by the file system users, their appli-

i d the behavior of the fil ; lient and 1.5 TB of uncompressédpdunp traces were col-
(C)?vlvciwr:sh Z?e cloesele t(iaevcliqti)?he t?a:wif?rls ﬁ;::)g(;?n » NONGected from the corporate and engineering servers, re-
y P : spectively. All traces were post-processed witthar k

0. 99. 6 [30], a network packet analyzer. All filenames,
3 Tracing Methodology usernames, and IP addressed were anonymized.
Our analysis of CIFS presented us with a number of
We collected CIFS network traces from two large-scalechallenges. CIFS is a stream-based protocol, so CIFS
enterprise-class file servers deployed in the NetApp corheaders do not always align with TCP packet bound-
porate headquarters. One is a mid-range file server witlries. Instead, CIFS relies on NetBIOS to define the
3 TB of total storage, with almost 3 TB used, deployedlength of the CIFS command and data. This became
in the corporate data center that hosts data used by over problem during peak traffic periods wheepdunp
1000 marketing, sales, and finance employees. The otheélropped a few packets, occasionally causing a NetBIOS
is a high-end file server with over 28 TB of total storage, session header to be lost. Without the session header,
with 19 TB used, deployed in the engineering data centert shar k was unable to locate the beginning of the next
It is used by over 500 engineering employees. ThroughCIFS packet within the TCP stream, though it was able
out the rest of this paper, we refer to these workloads at recover when it found a new session header aligned
corporateandengineeringrespectively. with the start of a TCP packet. To recover CIFS requests
All NetApp storage servers support multiple protocolsthat fell within this region, we wrote a program to parse
including CIFS, NFS, iSCSI, and Fibre Channel. Wethet cpdunp data and extract complete CIFS packets
tracedonly CIFS on each file server. For the corporatebased on a signature of the CIFS header while ignoring
server, CIFS was the primary protocol used, while theany NetBIOS session information.
engineering server saw a mix of CIFS and NFS proto- Another issue we encountered was the inability to cor-
cols. These servers were accessed by desktops and laglate CIFS sessions to usernames. CIFS is a session-
tops running primarily Windows for the corporate envi- based protocol in which a user begins a session by con-
ronment and a mix of Windows and Linux for the engi- necting to the file server via an authenticated login pro-



cess. However, authentication in our environment almost

| Corporate | Engineering|

always uses Kerberos [20]. Thus, regardless of the ac- Cé'z;‘;s 5251 285’4
_tual user, user aut_hentication gredentials are cryptdgrap Dataread (GB) | 364.3 723.4
ically changed with each login. As a result, we were Data written (GB)| ~ 177.7 364.4
unable to match a particular user across multiple ses- Swggct’erf‘;t?o 32 23
sions. Instead we r(_elied on the client's IP addr_ess to cor- Total operations | 228 miliion | 352 million
relate users to sessions. While less accurate, it provides a Operation name % %
reasonable estimate of users since most users access the Sesg%’;rffeate 102-40 101-39
servers via the LAN with the same IP address. Close 46 58
Read 16.2 15.1
Write 5.1 6.5
) Flush 0.1 0.04
4 Trace Analysis Lock 1.2 06
Delete 0.03 0.006
) ) ) File stat 36.7 42.5
This section presents the results of our analysis of our Set attribute 1.8 1.2
corporate and engineering CIFS workloads. We first de- D'r;‘:s%:ad éodi éldg
scribe the terminology used throughout our analysis. Our Pipe transactions 1.4 02

analysis begins with a comparison of our workloads and
then a comparison to past studies. We then analyze workrable 3: Summary of trace statistics. File system oper-
load activity, with a focus on 1/0 and sharing distribu- ations broken down by workload. All operations map to
tions. Finally, we examine properties of file type and usera single CIFS command except for file stat (composed of
session access patterns. We italicize our key observatiorf!er y-pat h.i nf o andquery fil e.i nf 0) and directory

following the section in which they are discussed. read (composed dfi nd_first2andfind.next2). Pipe
transactions map to remote IPC operations.

4.1 Terminology 4.2 Workload Comparison

Our study relies on several frequently used terms to de]2P€ 3 shows a summary comparison of overall charac-

scribe our observations. Thus, we begin by defining théeristics for both corporate and engineering workloads.
following terms: For each workload we provide some general statistics

along with the frequency of each CIFS request. Ta-
ble 3 shows that engineering has a greater number of
requests, due to a longer tracing period, though, interest-
ingly, both workloads have similar request percentages.
For both, about 21% of requests are file /0 and about
50% are metadata operations. There are also a number of
CIFS-specific requests. Our I/O percentages differ from
NFS workloads, in which 30—-80% of all operations were
I/0 [5,27]. This difference can likely attributed to both
differences in workload and protocol.

Total data transferred in the two traces combined was
just over 1.6 TB of data, which is less than 10% of the
file servers’ active storage of over 22 TB of data. Since
the data transfer summaries in Table 3 include files that
Open Request An open request for a file that has at  were transferred multiple times, our observations show

least one subsequent I/O and for which a close re- that somewhat more than 90% of the active storage on

quest was observed. Some CIFS metadata opera- the file servers was untouched over the three month trace
tions cause files to be opened without ever being period.

read or written. These open requests are artifacts  Read/write byte ratios have decreased significantly

of the CIFS client implementation, rather than the Compared to past studies [3’ 5, 24] We found 0n|y az2:1

workload, and are thus excluded. ratio, in contrast to past studies that found ratios of 4:1
Client A unique IP address. Since Kerberos authen- or higher, indicating workloads are becoming less read-

tication prevents us from correlating usernames to  centric. We believe that a key reason for the decrease in

users, we instead rely on IP address to identify the read-write ratio is that client caches absorb a signif-
unique clients. icant percentage of read requests. It is also interesting

I/O A single CIFS read or write command.

Sequential /O An I/O that immediately follows the
previous I/O to a file within an open/close pair (i.e.,
its offset equals the sum of the previous I/O’s offset
and length). The first I/O to an open file is always
considered sequential.

Random I/O An /O that is not sequential.

Sequential Run A series of sequential I/0s. An
opened file may have multiple sequential runs.

Sequentiality Metric The fraction of bytes trans-
ferred sequentially. This metric was derived from
a similar metric described by Ellardf al. [5].
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(b) Requests over 9 weeks.

Figure 1: Request distribution over timeThe frequency of all requests, read requests, and writeastguare plotted over time.
Figure 1(a) shows how the request distribution changes feingle week in October 2007. Here request totals are groupete
hour intervals. The peak one hour request total for corpeiiatl.7 million and 2.1 million for engineering. Figure 1@&)ows the
request distribution for a nine week period between Sepgermhd November 2007. Here request totals are grouped ingodaty
intervals. The peak one day intervals are 9.4 million forpmmate and 19.1 million for engineering.

that the corporate and engineering request mix are simidods, as was also noted in past studies [5,10,29]. Itis
lar, perhaps because of similar work being performed onnteresting to note that the overall request mix presented
the respective cliente( g, Windows office workloads) in Table 3 is different from the mix present in any sin-
or because client caching and 1/0 scheduling obfuscatgle day or week, suggesting that the overall request mix
the application and end-user behavi@bservation 1  might be different if a different time period were traced
Both of our workloads are more write-heavy than work- and is influenced more by workload than by behavior of
loads studied previously. the file system client.

Figures 1(a) and 1(b) show the distribution of total
CIFS requests and 1/O requests for each workload over ) .
a one week period and a nine week period, respectively?-3 Comparison to Past Studies

Figure 1(a) groups request counts into hourly intervals . . )
and Figure 1(b) uses daily intervals. Figure 1(a) shows!n this subsection, we compare our CIFS network file

L : tem workloads with those of past studies, including
unsurprisingly, that both workloads have strongly diur- system . :
nal cycles and that there are very evident peak and idl h_lc_)sggln :\IES [5}’ Spr;_te [Is]’ VXFS [|24] ind ¥\I/IndOWS
periods throughout a day. The cyclic idle periods sho [29] studies. In particular, we analyze how file access

there is opportunity for background processes, such JRatterns and file lifetimes have_ changed. l_:orcom_parison
log-cleaning and disk scrubbing to run without interfer- purposes, we use tables and figures consistent with those

ing with user requests. of past studies.

Interestingly, there is a significant amount of variance
between individual days in the number and ratio of boths 3 1  File Access Patterns
requests and 1/O. In days where the number of total re-
guests are increased, the number of read and write rérable 4 provides a summary comparison of file access
quests are not necessarily increased. This is also the capatterns, showing access patterns in terms of both 1/O
between weeks in Figure 1(b). The variation betweerrequests and bytes transferred. Access patterns are cate-
total requests and I/O requests implies any that singlgorized by whether a file was accessed read-only, write-
day or week is likely an insufficient profile of the over- only, or read-write. Sequential access is divided into two
all workload, so it is probably inaccurate to extrapolatecategoriesentireaccesses, which transfer the entire file,
trace observations from short time periods to longer peandpartial accesses, which do not.



File System Type Network Local

Workload Corporate | Engineering|| CAMPUS | EECS| Sprite|| Ins| Res|[ NT
Access Pattern 1/0s | Bytes | I/Os | Bytes Bytes | Bytes | Bytes || Bytes| Bytes | Bytes
Read-Only (% total) | 39.0| 52.1| 50.6| 55.3 53.1| 16.6| 835 98.7| 91.0| 59.0
Entire file sequential | 13.5| 10.5| 35.2| 27.4 47.7| 539| 725 86.3| 53.0| 68.0
Partial sequential 58.4| 69.2| 45.0| 55.0 29.3| 36.8| 254 59| 23.2| 20.0
Random 28.1| 20.3|19.8| 17.6 23.0 9.3 2.1 78| 238| 120
Write-Only (% total) | 15.1| 25.2| 17.3| 23.6 43.8| 823| 154 11 29| 26.0
Entire file sequential | 21.2| 36.2| 156 | 35.2 37.2| 196| 67.0| 84.7| 81.0| 78.0
Partial sequential 57.6| 55.1| 63.4| 61.0 52.3| 76.2| 289 9.3| 16.5 7.0
Random 21.2 8.7 ] 210 3.8 10.5 4.1 4.0 6.0 25| 15.0
Read-Write (% total) | 45.9 | 22.7| 32.1| 21.1 3.1 11 11 0.2 6.1 15.0
Entire file sequential | 7.4 01| 04 0.1 1.4 4.4 0.1 0.1 0.0| 22.0
Partial sequential 48.1| 78.3| 27.5| 50.0 0.9 1.8 0.0 0.2 0.3 3.0
Random 445| 21.6| 72.1| 49.9 97.8| 939 99.9| 99.6| 99.7| 74.0

Table 4: Comparison of file access patternBile access patterns for our corporate and engineering Wia#ls are compared with
those of previous studies. CAMPUS and EECS [5] are uniwelES mail server and home directory workloads, respedgtivel
Sprite [3], Ins and Res [24] are university computer lab wiodds. NT [29] is a combination of development and scientific
workloads.

Table 4 shows a remarkable increase in the percentageast studies. This suggests that file systems should con-
of read-write I/O and bytes transferred. Most previoustinue to optimize for short sequential common-case ac-
studies observed less than 7% of total bytes transferredesses. However, Figure 2(b), which shows the distri-
to files accessed read-write. However, we find that bothbution of bytes transferred during sequential runs, has a
our corporate and engineering workloads have over 20%ery different implication, indicating that many bytes are
of bytes transferred in read-write accesses. Furthermorgransferred in long sequential runs: between 50-80% of
45.9% of all corporate 1/0s and 32.1% of all engineer-bytes are transferred in runs of 10 MB or less. In addi-
ing 1/Os are in read-write accesses. This shows a dition, the distribution of sequential runs for the engineer-
version from the read-only oriented access patterns oiing workload is long-tailed, with 8% of bytes transferred
past workloads. When looking closer at read-write ac-in runs longer than 400 MB. Interestingly, read-write se-
cess patterns we find that sequentiality has also changeduential runs exhibit very different characteristics from
78.3% and 50.0% of bytes are transferred sequentially asead-only and write-only runs: most read-write bytes are
compared to roughly 1% of bytes in past studies. How-transferred in much smaller runs. This implies that the
ever, read-write patterns are still very random relative tointeractive nature of read-write accesses is less prone to
read-only and write-only patterns. These changes mayery large transfers, which tend to be mostly read-only or
suggest that network file systems store a higher fractionvrite-only. Overall, we found that most bytes are trans-
of mutable data, such as actively changing documentderred in much larger runs—up to 1000 times longer—
which make use of the centralized and shared environwhen compared to those observed in past studies, though
ment and a smaller fraction of system files, which tend tomost runs are short. Our results suggest file systems must
have more sequential read accesses. These changes ntaytinue to optimize for small sequential access, though
also suggest that the sequential read-oriented patterns fthey must be prepared to handle a small number of very
which some file systems are designed [16] are less prevdarge sequential accesses. This also correlates with the
lent in network file systems, and write-optimized file sys- heavy-tailed distributed of file sizes, which we discuss
tems [11, 25] may be better suite@bservation 2Read- later; for every large sequential run there must be at least
write access patterns are much more frequent comparedne large file. Observation 3 Bytes are transferred in
to past studies. much longer sequential runs than in previous studies.

We now examine the relationship between request

4.3.2 Sequentiality Analysis sizes and sequentiality. In Figure 3(a) and Figure 3(b) we

plot the number of bytes transferred from a file against

We next compared the sequential access patterns fourtde sequentiality of the transfer. This is measured using
in our workloads with past studies. A sequential runthe sequentiality metric: the fraction of bytes transfdrre

is defined as a series of sequential I/Os to a file. Figsequentially, with values closer to one meaning higher
ure 2(a) shows the distribution of sequential run lengthssequentiality. Figures 3(a) and 3(b) show this informa-
We see that sequential runs are short for both workloadgjon in a heat map in which darker regions indicate a
with almost all runs shorter than 100 KB, consistent with higher fraction of transfers with that sequentiality met-
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Figure 2: Sequential run properties.Sequential access patterns are analyzed for various sé¢iqueun lengths. Figure 2(a)
shows the length of sequential runs, while Figure 2(b) shooeve many bytes are transferred in sequential runs.
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Figure 3: Sequentiality of data transfer The frequency of sequentiality metrics is plotted agadfi§erent data transfer sizes.
Darker regions indicate a higher fraction of total trans$erLighter regions indicate a lower fraction. Transfer tgpae broken
into read-only, write-only, and read-write transfers. 8eqtiality metrics are grouped by tenths for clarity.

ric and lighter regions indicate a lower fraction. Eachwrite transfers are not always very sequential, which fol-
region within the heat map represents a 10% range of thiows from our previous observations in Figure 2(b), sug-
sequentiality metric. We see from Figures 3(a) and 3(bpesting that file systems may have difficulty anticipating
that small transfers and large transfers are more sequethe sequentiality of read-write accesses.

tial for read-only and write-only access, which isthe case  Next we analyze the relationship between file size and
for both workloads. However, medium-sized transfers,; . .agg pattern by examining the size of files at open time
between 64 KB and 4 MB, are more random. For largey, determine the most frequently opened file sizes and
and small transfers, file systems may be able to anticipatge fjle sizes from which most bytes are transferred. It

high sequentiality for read-only and write-only access.ghoid be noted that since we only look at opened files,
Read-write accesses, on the other hand, are much mofgis possible that this does not correlate to the file size

random for most transfer sizes. Even very large readgisiripution across the file system. Our results are shown
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Figure 4: File size access patternsThe distribution of open
requests and bytes transferred are analyzed accordingéo fil o o -
size at open. Figure 4(a) shows the size of files most frelyuent Figure 6: File lifetimes. The distributions of lifetimes for

Opened_ Figure 4(b) shows the size of files from which mos@.” created and deleted files are shown. Files may be deleted
bytes are transferred. through explicit delete request or truncation.

Figure 5 shows the distribution of file open durations.
in Figures 4(a) and 4(b). In Figure 4(a) we see that 57.5%Ve find that files are opened for shorter durations in the
of opens in the corporate workload are to newly-createdtorporate workload than in the engineering workload. In
files or truncated files with zero size. However, this is notthe corporate workload, 71.1% of opens are shorter than
the case in the engineering workload, where only 6.3% ofL00 ms, but just 37.1% are similarly short in the engi-
opens are to zero-size files. Interestingly, both workloadsieering workload. However, for both workloads most
find that most opened files are small; 75% of openedpen durations are less than 10 seconds, which is similar
files are smaller than 20 KB. However, Figure 4(a) showsto observations in past studies. This is also consistent
that most bytes are transferred from much larger files. Irwith our previous observations that small files, which
both workloads, we see that only about 60% of bytes ardikely have short open durations, are most frequently ac-
transferred from files smaller than 10 MB. The engineer-cessed.
ing distribution is also long-tailed with 12% of bytes be-
ing transferred from files larger than 5.GB. By compari- 4 3 3 File Lifetime
son, almost all of the bytes transferred in previous studies
came from files smaller than 10 MB. These observationghis subsection examines how file lifetimes have
suggest that larger files play a more significant role inchanged as compared to past studies. In CIFS, files
network file system workloads than in those previouslycan be either deleted through an explicit delete request,
studied. This may be due to frequent small file requestsvhich frees the entire file and its name, or through trun-
hitting the local client cache. Thus, file systems shouldcation, which only frees the data. Figure 6 shows the
still optimize small file layout for frequent access and distribution of file lifetimes, broken down by deletion
large file layout for large transfer@bservation 4Bytes  method. We find that most created files live longer than
are transferred from much larger files than in previous 24 hours, with 57.0% and 64.9% of corporate and engi-
studies. neering files persisting for more than a day. Both dis-



tributions are long-tailed, meaning many files live well Corporate

beyond 24 hours. However, files trae deleted usually O; — /__,fu_,:g.
live less than a day: only 18.7% and 6.9% of eventually- 4§ S

deleted files live more than 24 hours. Nonetheless, com- 04 2 ,",’

pared to past studies in which almost all deleted files live 0'3 ] _“,/)'

less than a minute, deleted files in our workloads tend to
live much longer. This may be due to fewer temporary
files being created over the network. However, we still

Engineering

1

o e
0.6 =

Fraction of 1/0s

find some files live very short lifetimes. In each work- 0.4 /,/
load, 56.4% and 38.6% of deleted files are deleted within 0.2 ;,//
P S

100 ms of creation, indicating that file systems should ex- 100us 1ms Loms 100ms 1s

pect fewer files to be deleted and files that live beyond

Per-File I/0 Inter-Arrival Times

than a few hundred milliseconds to have long lifetimes. AllO e R-R ——=-- R-W === W-R
Observation 5Files live an order of magnitude longer W-w
than in previous studies. (a) Per-file /0O inter-arrival times.

0 1 &
4.4 File I/O Properties % o, B /

S i
We now take a closer look at the properties of file 1/O, % g;;‘
where, as defined in Section 4.1, an 1/O request is de-* o ‘ ‘ ‘ ‘ ‘ ‘ ‘
fined as any single read or write operation. We begin 8K 16K 24K 32K 40K 48K 56K 64K
by looking at per-file, per-session 1/O inter-arrival times Corporate Rea &0 R?_‘ﬁ?ﬁ?{_suceorporate Wiites
which include network round-trip latency. Intervals are ~ _____ Engineering Reads  ——— Engineering Wries

categorized by the type of requests (read or write) that
bracket the interval; the distribution of interval lengths
is shown in Figure 7(a). We find that most inter-arrival
times are between 10& and 100 ms. In fact, 96.4% and Figure _7: File 1/0O properties The bursti_ness and and size
97.7% of all 1/0s have arrival times longer than 180 Properties of l/O requests are shown. Figure 7(a) shows the
and 91.6% and 92.4% are less than 100 ms for corporaﬂéqt'n:for'amval times. Figure 7(b) shows the sizes of reau
and engineering, respectively. This tight window means "
that file systems may be able to make informed deci;iong_5 File Re-Opens
about when to prefetch or flush cache data. Interestingly,
there is little distinction between read-read or readevrit In this subsection, we explore how frequently files are
and write-read or write-write inter-arrival times. Also, re-openedi. e, opened more than once during the trace
67.5% and 69.9% of 1/0 requests have an inter-arrivaperiod. Figure 8(a), shows the distribution of the num-
time of less than 3 ms, which is shorter than some meaber of times a file is opened. For both workloads, we
sured disk response times [23]. These observations maind that the majority of files, 65%, are only opened once
indicate cache hits at the server or possibly asynchronouduring the entire trace period. The infrequent re-access
I/O. Itis also interesting that both workloads have simi- of many files suggests there are opportunities for files
lar inter-arrival time distributions even though the hard-to be archived or moved to lower-tier storage. Further,
ware they are running is of different classes, a mid-rangeve find that about 94% of files are accessed fewer than
model versus a high-end model. five times. However, both of these distributions are long-
Next, we examine the distribution of bytes transferredtailed—some files are opened well over 100,000 times.
by a single I/0 request. As Figure 7(b) shows, mostThese frequently re-opened files account for about 7%
requests transfer less than 8 KB, despite a 64 KB maxof total opens in both workload€Observation 6 Most
imum request size in CIFS. This distribution may vary files are not re-opened once they are closed.
between CIFS and NFS since each buffers and schedulesWe now look at inter-arrival times between re-opens
I/O differently. The distribution in Figure 7(b) increases of a file. Re-open inter-arrival time is defined as the du-
for only a few I/O sizes, indicating that clients generally ration between the last close of a file and the time it is
use a few specific request sizes. This I/O size informare-opened. A re-open is considereahcurrentif a re-
tion can be combined with 1/O inter-arrival times from open occurs while the file is still open €., it has not
Figure 7(a) to calculate a distribution of I/Os per-secondyet been closed). The distribution of re-open inter-atriva
(IOPS) that may help file systems determine how muchimes is shown in Figure 8(b). We see that few re-opens
buffer space is required to support various I/O rates.  are concurrent, with only 4.7% of corporate re-opens and

(b) 1/O request sizes.
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between file re-opens is shown. Figure 8(a) shows how often
files are opened more than once. Figure 8(b) shows the time , 1
between re-opens. Z 08
S 0.6
c
0.7% of engineering re-opens occurring on an currently- % 2‘2‘ T
open file. However, re-operage temporally relatedto = : : — ‘
Concurrent 1ms 1s im 1lhr 24hr

the previous close; 71.1% and 58.8% of re-opens occur
less than one minute after the file is closed. Using this
information, file systems may be able to decide when a
file should be removed from the buffer cache or when
it should be scheduled for migration to another storage
tier. Observation 7If a file is re-opened, it is temporally Figure 10: File sharing properties We analyze the frequency
related to the previous close. and temporal properties of file sharing. Figure 10(a) sholes t
distribution of files opened by multiple clients. Figure B)0(
show the duration between shared opens.

Open Inter—Arrival Times
Corporate ~ ==="""="- Engineering

(b) Sharing inter-arrival times.

4.6 Client Request Distribution

) S ) that file systems may be able to take advantage of this in-
We next examine the distribution of file open and dataormation for doing informed allocation of resources or
requests amongst clients; recall from Section 4.1 tha&uality of service planningDbservation 8A small frac-

“client” refers to a unique IP address rather than an indixjon of clients account for a large fraction of file activity.
vidual user. We use Lorenz curves [14]—cumulative dis-

tribution functions of probability distributions—rather

than random variables to show the distribution of re-4 7  File Sharing

guests across clients. Our results, shown in Figure 9, find

that a tiny fraction of clients are responsible for a signif- This subsection looks at the extent of file sharing in our
icant fraction of open requests and bytes transferred. Invorkloads. A file is shared when two or more clients
corporate and engineering, 0.02% and 0.04% of client®pen the same filat some timeluring the trace period;
make 11.9% and 22.5% of open requests and accouriie sharing need not be concurrent. Since we can only
for 10.8% and 24.6% of bytes transferred, respectivelydistinguish IP addresses and not actual users, it is possi-
Interestingly, 0.02% of corporate clients and 0.04% ofble that two IP addresses may represent a single (human)
engineering clients correspond to approximately 1 clientuser and vice versa. However, the drastic skew of our
for each workload. Additionally, we find that about 35 results indicates this likely has little impact on our obser
corporate clients and 5 engineering clients account fowations. Also, we only consider opened files in our anal-
close to 50% of the opens in each workload. This sugysis; files which have only had their metadata accessed
gests that the distribution of activity is highly skewed andby multiple clients are not included in the these results.



Figure 10(a) shows the distribution of the frequency Corporate
with which files are opened by multiple clients. We find 1 A “.Wm I

that most files are only opened by a single client. In g:::

fact, 76.1% and 97.1% of files are only opened by one g 0.4

client in corporate and engineering, respectively. Also, g 02

92.7% and 99.7% of files are ever opened by two or

fewer clients. This s_uggests tha_t the shared enwronment% 1 T

offered by network file systems is not often taken advan- & 0. - W
2|

n Percentage

T

I |

tage of. Other methods of sharing files, such as email or § ¢ 1

web and wiki pages, may reduce the need for clients to ~ g:g ]
share files via the file system. However, both distribu- 0 ; ‘ ‘

T
Engineering
T
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T
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tions are long-tailed, and a few files are opened by many 0 10 N et of Clioms

clients. In the corporate workload, four files are opened
by over 2,000 clients and in the engineering workload,
one file is opened by over 1,500 clients. This shows thatFigure 11: File sharing access patternsthe fraction of read-

while not Cor‘_nmon, sharing f|Ie§ through the file ,SyStemonly, write-only, and read-write accesses are shown fdedif
can be heavily used on occasio@bservation 9Files  jng numbers of sharing clients. Gaps are seen where no files

Read-Only M Write—Only B Read-Write

are infrequently accessed by more than one client. were shared with that number of clients.
In Figure 10(b) we examine inter-arrival times be-
tween different clients opening a file. We find that con- Corporate
current (simultaneous) file sharing is rare. Only 11.4% L
and 0.2% of shared opens from different clients were 83 Mo At aby o
concurrent in corporate and engineering, respectively. o4 Tkl ”\WVNW/ \/ W/W
When combined with the observation that most files are £ 02 1 A/
only opened by a single client, this suggests that syn-£ ° ‘ L
. . . . . 2 Engineering
chronization for shared file access is not often required, S 1
indicating that file systems may benefit from looser lock- & 08
ing semantics. However, when examining the duration gi M) |
between shared opens we find that sharing does have a o> NaS \V/ \V/V
temporal relationship in the corporate workload; 55.2% oL — T T T T T

of shared opens occur within one minute of each other. 0 10 20 30 40 50 60 70 B0 90 100

However, this is not true for engineering, where only
4.9% of shared opens occur within one minute.

Number of Clients

) o Figure 12: User file sharing equality The equality of sharing
We now look at the manner (read-only, write-only, or is shown for differing numbers of sharing clients. The Gini

read-write) with which shared files ‘f"re accessed. Flgfcoef'ficient, which measures the level of equality, is nean@w
ure 1:_[ shows the usage patterns for files ppened by mUItEharing clients have about the same number of opens to a file.
ple clients. Gaps are present where no files were open&glis near 1 when clients unevenly share opens to a file.
by that number of clients. We see that shared files are
accessed read-only the majority of the time. These majty, we use the Gini coefficient [9], which measures sta-
be instances of reference documents or web pages thestical dispersion, such as the inequality of income in
are rarely re-written. The number of read-only accessegconomic analysis. We apply the equality conceptto how
slightly decreases as more clients access a file and a reafilequently a shared file is opened by a client. Lower co-
write pattern begins to emerge. This suggests that filegfficients mean sharing clients open the file more equally
accessed by many clients are more mutable. These mayhe same number of times), and higher coefficients mean
be business documents, source code, or web pages. Singgew clients account for the majority of opens. Figure 12
synchronization is often only required for multiple con- shows Gini coefficients for various numbers of shared
current writers, these results further argue for loose fileclients. We see that, as more clients open a file, the level
system synchronization mechanism®bservation 10  of equality decreases, meaning few clients begin to dom-
File sharing is rarely concurrent and mostly read-only. inate the number of open requests. Gini coefficients are
Finally, we analyze which clients account for the mostlower, less than 0.4, for files opened by fewer than 20
opens to shared files. Equality measures how opeglients, meaning that when a few clients access a file,
requests are distributed amongst clients sharing a filehey each open the file an almost equal number of times.
Equal file sharing implies all sharing clients open theAs more clients access the file, a small number of clients
shared file an equal number of times. To analyze equalbegin to account for most of the opens. This may indicate



that as more clients share a file, it becomes less reason- gt s17%

able for all sharing clients to access the file evenly,anda ,2* 252 e M — 0
few dominate clients begin to emerge. doc m29% xml B2 53106
cnm  m3.2% zip m:. 92.2%
X;:: :3;530;00 :Z: bb‘“’le]% 99.5%
4.8 File Type and User Session Patterns ini -6.2% T ——
Xls ~ mm—10.3% 14.6% ’
There have been a number of attempts to make layoutknown e 2% % 043
caching, and prefetching decisions based on how specific 0% 10% 20% 30% 40% 50% 0% 25% 50% 75% 100%
file types are accessed and the access patterns of certain % of Opens W % of IO Requests 11 % of Read Bytes
users [6,17]. In this subsection, we take a closer at how (a) Corporate.
certain file types are accessed and the access patternsthat _ = .,
occur between when a user begins a CIFS “user session” thpl w21% unknown IR oo
by logging on and when they log-off. Our emphasisis ~ &° e s b
on whether file types or users have common access patmknown m3.6% ere B2y oo
terns that can be exploited by the file system. We begin ~ ° =7 T e
our analysis by breaking down file type frequencies for  jpy mmos% g e o
both workloads. Figures 13(a) and 13(b) show the most ¢ ==*** . 0 —————
frequently opened and most frequently read and written E—————
file types. For frequently read and written file types, we 0% 10‘%3%22:/"022:“5 e ot T e

show the fraction of bytes read for that type. Files with
no discernible file extension are labeled “unknown.”

We find that the corporate workload has no file type,
other than unknown types, that dominates open request
However, 37.4% of aII_ opens in the engineering W_Ork'left show the file types most frequently read or written ared th
Ipad are for C header files. Both workloads have a smglepementalge of accessed bytes read for those types.
file type that consumes close to 20% of all read and write
I/0. Not surprisingly, these types correspond to generallyered highly sequential, 0.8-0.2 is considered mixed se-
large files,e. g, mdb (Microsoft Access Database) files quentiality, and 0.19-0 is considered highly random. Fi-
andvmdk (VMWare Virtual Disk) files. However, we nally, access signatures are categorized by the number of
find that most file types do not consume a significantlybytes transferred; access signatures are considered small
large fraction of open or I/O requests. This shows thaiif they transfer no more than 100 KB and large otherwise.
file systems likely can be optimized for the small sub-Darker regions indicate the file type has a higher fraction
set of frequently accessed file types. Interestingly, theref access signatures with those properties shown on the
appears to be little correlation between how frequentlyy-axis, and lighter regions indicate fewer signatures with
a file is opened and how frequently it is read or written.those characteristics.

Only three corporate and two engineering file types ap- Figure 14 shows that most file types have several dis-
pear as both frequently opened and frequently read otinct kinds of access patterns, rather than one as previ-
written; themdb andvndk types only constitute 0.5% ously presumed. We also see that each type has multiple
and 0.08% of opens. Also, it appears file types that argatterns that are more frequent than others, suggesting
frequently read or written are mostly read. that file systems may not be able to properly predict file

We now analyze the hypothesis that file systems caitype access patterns using only a single pattern. Inter-
make use of file type and user access patterns to improwvestingly, small sequential read patterns occur frequently
layout and prefetching [5, 6, 17]. We do so examireigg ~ across most of the file types, implying that file systems
cess signatures vector containing the number of bytes should be optimized for this pattern, as is often already
read, bytes written, and sequentiality metric of a file ac-done.Observation 11Most file types do not have a sin-
cess. We start by defining an access signature for eadjle pattern of access.
open/close pair for each file type above, we then apply Surprisingly, file types such asndk that consume a
K-means clustering [15] to the access signatures of eaclarge fraction of total 1/0Os are frequently accessed with
file type. K-means groups access signatures with similasmall sequential reads. In fact, 91% of aldk ac-
patterns into unique clusters with varying densities. Ourcesses are of this pattern, contradicting the intuition de-
results are shown in Figure 14. For clarity we have cat+ived from Figure 13(b) thatndk files have large ac-
egorized access signatures by the access type: read-onégsses. However, a much smaller fractiorvotlk ac-
write-only, or read-write. We further group signatures cesses transfer huge numbers of bytes in highly random
by their sequentiality metric ranges: 1-0.81 is consid-read-write patterns. Several patterns read and write over

(b) Engineering.

igure 13: File type popularity. The histograms on the right
show which file types are opened most frequently. Those on the
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Figure 14: File type access pattern¥he frequency of access patterns are plotted for varioustfffjes. Access patterns are
categorized into 18 groups. Increasingly dark regions @adé higher fractions of accesses with that pattern.

10 GB of data with a sequentiality metric less than 0.5,5 Design Implications
showing that frequent patterns may not be representative
of the significant patterns in terms of bytes transferred oin this section we explore some of the possible impli-
sequentiality. This argues that file systems should anticeations of our trace analysis on network file system de-
ipate several patterns of access for any file type if layousigns. We found that read-write access patterns have
or prefetching benefits are to be gained. Also, it is crit-significantly increased relative to previous studies (see
ical that they identify transitions between patterns. ForSection 4.3.1). Though we observed higher sequential-
example, a file system may, by default, prefetch data foity in read-write patterns than past studies, they are still
vndk files in small chunks: 100KB or less. However, highly random compared to read-only or write-only ac-
when over 100 KB of anuk file is accessed this signals cess patterns (see Section 4.3.1). In contrast, a num-
the likely start of a very large transfer. In this case, theber of past studies found that most 1/Os and bytes are
file system must properly adjust its prefetching. transferred in read-only sequential access patterns [3, 21
Our observation that many file types exhibit several29], which has impacted the designs of several file sys-
access patterns of varying frequency and significancéems [16, 19]. Our observed shift towards read-write ac-
draws an interesting comparison to the results in Table 4cess patterns suggests file systems should look towards
Table 4 shows significant read-write 1/0 and byte transdimproving random access performance, perhaps through
fer activity. However, file types in Figure 14 rarely have alternative media, such as flash. In addition, we observed
read-write patterns. This implies, read-write file accessethat the ratio of data read to data written is decreasing
are, in general, uncommon, however when they do occuigompared to past studies [3, 5, 24] (see Section 4.2). This
a large number of bytes are accessed. decrease is likely due to increasing effectiveness of tlien
Next, we apply the same K-means clustering approaciéaches and fewer read-heavy system files on network
to access signatures of access patterns that occur with#torage. When coupled with increasing read-write access
a CIFS user session. Recall that CIFS users begin a copatterns, write-optimized file systems, such as LFS [25]
nection to the file server by creating an authenticated useand WAFL [11], or NVRAM write caching appear to be
session and end by eventually logging off. We definegood designs for network file systems.
signatures for all accesses performed while the user is We also observed that files are infrequently re-opened
logged on. However, we only consider sessions in which(see Section 4.5) and are usually accessed by only one
bytes are transferred. The CIFS client opens short, temelient (see Section 4.7). This suggests that caching strate
porary sessions for various auxiliary functions, which wegies which exploit this, such as exclusive caching [31],
exclude from this study as they do not represent a normahay have practical benefits. Also, the limited reuse
user log-in. Like file types, user sessions have severadf files indicates that increasing the size of server data
common patterns and no single pattern can summarize atlaches may add only marginal benefit; rather, file servers
of a user's accesses. The majority of user sessions haveay find larger metadata caches more valuable because
read-write patterns with less than 30 MB read and 10 MBmetadata requests made up roughly 50% of all operations
written with a sequentiality metric close to 0.5, while a in both workloads, as Section 4.2 details.
few patterns have much more significant data transfers Our finding that most created files are not deleted (see
that read and write gigabytes of data. Section 4.3.3) and few files are accessed more than once
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