
Measurement and Analysis of Large-Scale Network File System Workloads

Andrew W. Leung⋆ Shankar Pasupathy† Garth Goodson† Ethan L. Miller⋆

⋆University of California, Santa Cruz †NetApp Inc.
{aleung, elm}@cs.ucsc.edu {shankarp, goodson}@netapp.com

Abstract
In this paper we present the analysis of two large-scale

network file system workloads. We measured CIFS traf-
fic for two enterprise-class file servers deployed in the
NetApp data center for a three month period. One file
server was used by marketing, sales, and finance de-
partments and the other by the engineering department.
Together these systems represent over 22 TB of storage
used by over 1500 employees, making this the first ever
large-scale study of the CIFS protocol.

We analyzed how our network file system workloads
compared to those of previous file system trace studies
and took an in-depth look at access, usage, and sharing
patterns. We found that our workloads were quite dif-
ferent from those previously studied; for example, our
analysis found increased read-write file access patterns,
decreased read-write ratios, more random file access, and
longer file lifetimes. In addition, we found a number of
interesting properties regarding file sharing, file re-use,
and the access patterns of file types and users, showing
that modern file system workload has changed in the past
5–10 years. This change in workload characteristics has
implications on the future design of network file systems,
which we describe in the paper.

1 Introduction

Network file systems are playing an increasingly impor-
tant role in today’s data storage. The motivation to cen-
tralize data behind network file systems has been driven
by the desire to lower management costs, the need to reli-
ably access growing amounts of data from multiple loca-
tions, and is made possible by improvements in process-
ing and network power. The design of these systems is
usually guided by an understanding of file system work-
loads and user behavior [12, 19, 25], which is often ob-
tained by measuring and analyzing file system traces.

While a number of trace-based file system studies have
been conducted in the past [3, 5, 21, 24, 29], there are

several factors indicating that further study is necessary
to aid future network file system designs. First, no ma-
jor study has been conducted of CIFS (Common Inter-
net File System) [13], the network file transfer protocol
used by Windows. Second, the last major trace study [5]
analyzed traces from 2001, over half a decade ago; sig-
nificant changes in the architecture and use of network
storage since then have resulted in changes in workload.
Third, no published study has ever analyzed large-scale
enterprise file system workloads, focusing instead on
research-type workloads, such as those seen in the uni-
versity settings often available to systems researchers.

In this paper, we examine two real-world, large-scale
enterprise network file system workloads, collected over
three months from two network file servers deployed
in NetApp’s data center. One server hosts data for the
marketing, sales, and finance departments, and the other
hosts data for engineering departments. Combined, these
systems contain over 22 TB of actively used storage and
are used by over 1500 employees. The analysis of our
trace data focused on: (1) changes in file access patterns
and lifetimes since previous studies, (2) properties of file
I/O and file sharing, and (3) the relationship between file
type and client access patterns.

Our analysis found important changes in several as-
pects of file system workloads. For example, we found
that read-write file access patterns, which are highly ran-
dom, are much more common relative to read-only and
write-only access patterns as compared to past studies.
We also found our workloads to be more write-oriented
than those previously studied, with only about twice as
many bytes read as written. Both of these findings chal-
lenge traditionally-held assumptions about access pat-
terns and sequentiality. A summary of our key obser-
vations can be found in Table 1.

In all, our contributions include:
1) The first published study of CIFS workloads.
2) A comparison with past file system studies.
3) A new study of file access, I/O and sharing patterns.

This paper will be published in the Proceedings of the 2008 USENIX Annual Technical Conference, Boston, MA, June 2008.



Compared to Previous Studies

1. Both of our workloads are more write-oriented. Read to write byte ratios have signifcantly decreased.
2. Read-write access patterns have increased 30-fold relative to read-only and write-only access patterns.
3. Most bytes are transferred in longer sequential runs. These runs are an order of magnitude larger.
4. Most bytes transferred are from larger files. File sizes are up to an order of magnitude larger.
5. Files live an order of magnitude longer. Fewer than 50% aredeleted within a day of creation.

New Observations

6. Files are rarely re-opened. Over 66% are re-opened once and 95% fewer than five times.
7. Files re-opens are temporally related. Over 60% of re-opens occur within a minute of the first.
8. A small fraction of clients account for a large fraction offile activity. Fewer than 1% of clients account for
50% of file requests.
9. Files are infrequently shared by more than one client. Over 76% of files are never opened by more than one client.
10. File sharing is rarely concurrent and sharing is usuallyread-only. Only 5% of files opened by multiple clients
are concurrent and 90% of sharing is read-only.
11. Most file types do not have a common access pattern.

Table 1: Summary of observations.A summary of important file system trace observations from our trace analysis. Note that we
define clients to be unique IP addresses, as described in Section 4.1.

4) An analysis of file type and user session patterns in
network file systems.
5) A discussion of the significant design implications de-
rived from our study.

2 Background

In this section, we discuss previous studies, summarized
in Table 2, and outline factors we believe motivate the
need for new file system analysis. In addition, we pro-
vide a brief background of the CIFS protocol.

2.1 Past Studies

Early file system studies, such as those of the BSD [21],
VAX/VMS [22], and Sprite [3] file systems, revealed a
number of important observations and trends that guided
file system design for over two decades. In particular,
they observed a significant tendency towards large, se-
quential read access, limited read-write access, bursty
I/O patterns, and very short file lifetimes. Other studies
uncovered additional information such as file size dis-
tributions [18, 26] and workload self-similarity [10]. A
more recent study of the Windows NT file system [29]
supported a number of the past observations and trends.
In 2000, Roselli,et al. compared four file system work-
loads [24]; they noted that block lifetimes had increased
since past studies and explored the effect on caching
strategies. The most recent study, in 2001, analyzed NFS
traffic to network file servers [5], identifying a number
of peculiarities with NFS tracing and arguing that path-
names can aid file system layout.

In addition to trace-based studies, which analyze file
system workloads, several snapshot-based studies have
analyzed file system contents [2, 4, 7, 8]. These studies
showed how file attributes, such as size and type, are

distributed throughout the name-space, and also how file
system contents change over time.

2.2 The Need for a New Study

Although there have been a number of previous file sys-
tem trace studies, several factors that indicate that a new
study may aid ongoing network file system design.
Time since last study. There have been significant
changes in computing power, network bandwidth, and
network file system usage since the last major study in
2001 [5]. A new study will help understand how these
changes impact network file system workloads.
Few network file system studies.Only a few studies
have explored network file system workloads [3, 5, 22],
despite their differences from local file systems. Lo-
cal file systems workloads include the access patterns of
many system files, which are generally read-only and se-
quential, and are focused on the client’s point of view.
While such studies are useful for understanding client
workload, it is critical for network file systems to focus
on the workload seen at the server, which often excludes
system files or accesses that hit the client cache.
No CIFS protocol studies.The only major network file
system study in the past decade analyzed NFSv2 and
v3 workloads [5]. Though NFS is common on UNIX
systems, most Windows systems use CIFS. Given the
widespread Windows client population and differences
between CIFS and NFS (e. g., CIFS is a stateful proto-
col, in contrast to NFSv2 and v3), analysis beyond NFS
can add more insight into network file system workloads.
Limited file system workloads. University [3, 5, 10,
21, 24] and personal computer [2, 4, 32] workloads have
been the focus of a number of past studies. While use-
ful, these workloads may differ from the workloads of
network file systems deployed in other environments.



Study Date of Traces FS/Protocol Network FS Trace Approach Workload

Ousterhout,et al. [21] 1985 BSD Dynamic Engineering
Ramakrishnan,et al. [22] 1988-89 VAX/VMS x Dynamic Engineering, HPC, Corporate

Baker,et al. [3] 1991 Sprite x Dynamic Engineering
Gribble,et al. [10] 1991-97 Sprite, NFS, VxFS x Both Engineering, Backup

Douceur and Bolosky [4] 1998 FAT, FAT32, NTFS Snapshots Engineering
Vogels [29] 1998 FAT, NTFS Both Engineering, HPC

Zhou and Smith [32] 1999 VFAT Dynamic PC
Roselliet al. [24] 1997-00 VxFS, NTFS Dynamic Engineering, Server

Ellard,et al. [5] 2001 NFS x Dynamic Engineering, Email
Agrawal,et al. [2] 2000-2004 FAT, FAT32, NTFS Snapshots Engineering

Leung,et al. 2007 CIFS x Dynamic Corporate,Engineering

Table 2: Summary of major file system studies over the past two decades. For each study, we show the date of trace data, the file
system or protocol studied, whether it involved network filesystems, the trace methodology, and the workloads studied.Dynamic
trace studies involve traces of live requests. Snapshot trace studies involve snapshots of file system contents.

2.3 The CIFS Protocol

The CIFS protocol, which is based on the Server Mes-
sage Block (SMB) protocol that defines most of the file
transfer operations used by CIFS, differs in a number of
respects from oft-studied NFSv2 and v3. Most impor-
tantly, CIFS is stateful: CIFS user and file operations act
on stateful session IDs and file handles, making analy-
sis of access patterns simpler and more accurate than in
NFSv2 and v3, which require heuristics to infer the start
and end of an access [5]. Although CIFS may differ from
other protocols, we believe our observations arenot tied
exclusively to CIFS because access patterns, file sharing,
and other workload characteristics observed by the file
server are influenced by the file system users, their appli-
cations, and the behavior of the file system client, none
of which are closely tied to the transfer protocol.

3 Tracing Methodology

We collected CIFS network traces from two large-scale,
enterprise-class file servers deployed in the NetApp cor-
porate headquarters. One is a mid-range file server with
3 TB of total storage, with almost 3 TB used, deployed
in the corporate data center that hosts data used by over
1000 marketing, sales, and finance employees. The other
is a high-end file server with over 28 TB of total storage,
with 19 TB used, deployed in the engineering data center.
It is used by over 500 engineering employees. Through-
out the rest of this paper, we refer to these workloads as
corporateandengineering, respectively.

All NetApp storage servers support multiple protocols
including CIFS, NFS, iSCSI, and Fibre Channel. We
tracedonly CIFS on each file server. For the corporate
server, CIFS was the primary protocol used, while the
engineering server saw a mix of CIFS and NFS proto-
cols. These servers were accessed by desktops and lap-
tops running primarily Windows for the corporate envi-
ronment and a mix of Windows and Linux for the engi-

neering environment. A small number of clients also ran
Mac OS X and FreeBSD. Both servers could be accessed
through a Gigabit Ethernet LAN, a wireless LAN, or via
a remote VPN.

Our traces were collected from both the corporate and
engineering file servers between August 10th and De-
cember 14th, 2007. For each server, we mirrored a port
on the network switch to which it was connected and at-
tached it to a Linux workstation runningtcpdump [28].
Since CIFS often utilizes NetBIOS [1], the workstation
recorded all file server traffic on the NetBIOS name,
datagram, and session service ports as well as traf-
fic on the CIFS port. The trace data was periodically
copied to a separate file server. Approximately 750 GB
and 1.5 TB of uncompressedtcpdump traces were col-
lected from the corporate and engineering servers, re-
spectively. All traces were post-processed withtshark
0.99.6 [30], a network packet analyzer. All filenames,
usernames, and IP addressed were anonymized.

Our analysis of CIFS presented us with a number of
challenges. CIFS is a stream-based protocol, so CIFS
headers do not always align with TCP packet bound-
aries. Instead, CIFS relies on NetBIOS to define the
length of the CIFS command and data. This became
a problem during peak traffic periods whentcpdump
dropped a few packets, occasionally causing a NetBIOS
session header to be lost. Without the session header,
tshark was unable to locate the beginning of the next
CIFS packet within the TCP stream, though it was able
to recover when it found a new session header aligned
with the start of a TCP packet. To recover CIFS requests
that fell within this region, we wrote a program to parse
the tcpdump data and extract complete CIFS packets
based on a signature of the CIFS header while ignoring
any NetBIOS session information.

Another issue we encountered was the inability to cor-
relate CIFS sessions to usernames. CIFS is a session-
based protocol in which a user begins a session by con-
necting to the file server via an authenticated login pro-



cess. However, authentication in our environment almost
always uses Kerberos [20]. Thus, regardless of the ac-
tual user, user authentication credentials are cryptograph-
ically changed with each login. As a result, we were
unable to match a particular user across multiple ses-
sions. Instead we relied on the client’s IP address to cor-
relate users to sessions. While less accurate, it provides a
reasonable estimate of users since most users access the
servers via the LAN with the same IP address.

4 Trace Analysis

This section presents the results of our analysis of our
corporate and engineering CIFS workloads. We first de-
scribe the terminology used throughout our analysis. Our
analysis begins with a comparison of our workloads and
then a comparison to past studies. We then analyze work-
load activity, with a focus on I/O and sharing distribu-
tions. Finally, we examine properties of file type and user
session access patterns. We italicize our key observations
following the section in which they are discussed.

4.1 Terminology

Our study relies on several frequently used terms to de-
scribe our observations. Thus, we begin by defining the
following terms:

I/O A single CIFS read or write command.
Sequential I/O An I/O that immediately follows the

previous I/O to a file within an open/close pair (i.e.,
its offset equals the sum of the previous I/O’s offset
and length). The first I/O to an open file is always
considered sequential.

Random I/O An I/O that is not sequential.
Sequential Run A series of sequential I/Os. An

opened file may have multiple sequential runs.
Sequentiality Metric The fraction of bytes trans-

ferred sequentially. This metric was derived from
a similar metric described by Ellard,et al. [5].

Open Request An open request for a file that has at
least one subsequent I/O and for which a close re-
quest was observed. Some CIFS metadata opera-
tions cause files to be opened without ever being
read or written. These open requests are artifacts
of the CIFS client implementation, rather than the
workload, and are thus excluded.

Client A unique IP address. Since Kerberos authen-
tication prevents us from correlating usernames to
users, we instead rely on IP address to identify
unique clients.

Corporate Engineering

Clients 5261 2654
Days 65 97

Data read (GB) 364.3 723.4
Data written (GB) 177.7 364.4

R:W I/O ratio 3.2 2.3
R:W byte ratio 2.1 2.0
Total operations 228 million 352 million
Operation name % %
Session create 0.4 0.3

Open 12.0 11.9
Close 4.6 5.8
Read 16.2 15.1
Write 5.1 6.5
Flush 0.1 0.04
Lock 1.2 0.6
Delete 0.03 0.006

File stat 36.7 42.5
Set attribute 1.8 1.2

Directory read 10.3 11.8
Rename 0.04 0.02

Pipe transactions 1.4 0.2

Table 3: Summary of trace statistics. File system oper-
ations broken down by workload. All operations map to
a single CIFS command except for file stat (composed of
query path info andquery file info) and directory
read (composed offind first2 andfind next2). Pipe
transactions map to remote IPC operations.

4.2 Workload Comparison

Table 3 shows a summary comparison of overall charac-
teristics for both corporate and engineering workloads.
For each workload we provide some general statistics
along with the frequency of each CIFS request. Ta-
ble 3 shows that engineering has a greater number of
requests, due to a longer tracing period, though, interest-
ingly, both workloads have similar request percentages.
For both, about 21% of requests are file I/O and about
50% are metadata operations. There are also a number of
CIFS-specific requests. Our I/O percentages differ from
NFS workloads, in which 30–80% of all operations were
I/O [5, 27]. This difference can likely attributed to both
differences in workload and protocol.

Total data transferred in the two traces combined was
just over 1.6 TB of data, which is less than 10% of the
file servers’ active storage of over 22 TB of data. Since
the data transfer summaries in Table 3 include files that
were transferred multiple times, our observations show
that somewhat more than 90% of the active storage on
the file servers was untouched over the three month trace
period.

Read/write byte ratios have decreased significantly
compared to past studies [3, 5, 24]. We found only a 2:1
ratio, in contrast to past studies that found ratios of 4:1
or higher, indicating workloads are becoming less read-
centric. We believe that a key reason for the decrease in
the read-write ratio is that client caches absorb a signif-
icant percentage of read requests. It is also interesting



Corporate

Oct 1−Oct 7, 2007
Mon Tue Wed Thu Fri Sat Sun

R
eq

ue
st

s 
(m

ill
io

ns
)

.5

1

1.5
Engineering

Oct 1−Oct 7, 2007
Mon Tue Wed Thu Fri Sat Sun

All Requests Reads Writes

(a) Requests over a week.

Corporate

Sept 20−Nov 14, 2007
09/20 09/27 10/04 10/11 10/18 10/25 11/01 11/08 11/14

R
eq

ue
st

s 
(m

ill
io

ns
)

2

4

6

8
Engineering

Sept 20−Nov 14, 2007
09/20 09/27 10/04 10/11 10/18 10/25 11/01 11/08 11/14

All Requests Reads Writes

(b) Requests over 9 weeks.

Figure 1: Request distribution over time.The frequency of all requests, read requests, and write requests are plotted over time.
Figure 1(a) shows how the request distribution changes for asingle week in October 2007. Here request totals are groupedin one
hour intervals. The peak one hour request total for corporate is 1.7 million and 2.1 million for engineering. Figure 1(b)shows the
request distribution for a nine week period between September and November 2007. Here request totals are grouped into one day
intervals. The peak one day intervals are 9.4 million for corporate and 19.1 million for engineering.

that the corporate and engineering request mix are simi-
lar, perhaps because of similar work being performed on
the respective clients (e. g., Windows office workloads)
or because client caching and I/O scheduling obfuscate
the application and end-user behavior.Observation 1
Both of our workloads are more write-heavy than work-
loads studied previously.

Figures 1(a) and 1(b) show the distribution of total
CIFS requests and I/O requests for each workload over
a one week period and a nine week period, respectively.
Figure 1(a) groups request counts into hourly intervals
and Figure 1(b) uses daily intervals. Figure 1(a) shows,
unsurprisingly, that both workloads have strongly diur-
nal cycles and that there are very evident peak and idle
periods throughout a day. The cyclic idle periods show
there is opportunity for background processes, such as
log-cleaning and disk scrubbing to run without interfer-
ing with user requests.

Interestingly, there is a significant amount of variance
between individual days in the number and ratio of both
requests and I/O. In days where the number of total re-
quests are increased, the number of read and write re-
quests are not necessarily increased. This is also the case
between weeks in Figure 1(b). The variation between
total requests and I/O requests implies any that single
day or week is likely an insufficient profile of the over-
all workload, so it is probably inaccurate to extrapolate
trace observations from short time periods to longer pe-

riods, as was also noted in past studies [5, 10, 29]. It is
interesting to note that the overall request mix presented
in Table 3 is different from the mix present in any sin-
gle day or week, suggesting that the overall request mix
might be different if a different time period were traced
and is influenced more by workload than by behavior of
the file system client.

4.3 Comparison to Past Studies

In this subsection, we compare our CIFS network file
system workloads with those of past studies, including
those in NFS [5], Sprite [3], VxFS [24] and Windows
NT [29] studies. In particular, we analyze how file access
patterns and file lifetimes have changed. For comparison
purposes, we use tables and figures consistent with those
of past studies.

4.3.1 File Access Patterns

Table 4 provides a summary comparison of file access
patterns, showing access patterns in terms of both I/O
requests and bytes transferred. Access patterns are cate-
gorized by whether a file was accessed read-only, write-
only, or read-write. Sequential access is divided into two
categories,entireaccesses, which transfer the entire file,
andpartial accesses, which do not.



File System Type Network Local
Workload Corporate Engineering CAMPUS EECS Sprite Ins Res NT

Access Pattern I/Os Bytes I/Os Bytes Bytes Bytes Bytes Bytes Bytes Bytes
Read-Only (% total) 39.0 52.1 50.6 55.3 53.1 16.6 83.5 98.7 91.0 59.0
Entire file sequential 13.5 10.5 35.2 27.4 47.7 53.9 72.5 86.3 53.0 68.0
Partial sequential 58.4 69.2 45.0 55.0 29.3 36.8 25.4 5.9 23.2 20.0
Random 28.1 20.3 19.8 17.6 23.0 9.3 2.1 7.8 23.8 12.0

Write-Only (% total) 15.1 25.2 17.3 23.6 43.8 82.3 15.4 1.1 2.9 26.0
Entire file sequential 21.2 36.2 15.6 35.2 37.2 19.6 67.0 84.7 81.0 78.0
Partial sequential 57.6 55.1 63.4 61.0 52.3 76.2 28.9 9.3 16.5 7.0
Random 21.2 8.7 21.0 3.8 10.5 4.1 4.0 6.0 2.5 15.0

Read-Write (% total) 45.9 22.7 32.1 21.1 3.1 1.1 1.1 0.2 6.1 15.0
Entire file sequential 7.4 0.1 0.4 0.1 1.4 4.4 0.1 0.1 0.0 22.0
Partial sequential 48.1 78.3 27.5 50.0 0.9 1.8 0.0 0.2 0.3 3.0
Random 44.5 21.6 72.1 49.9 97.8 93.9 99.9 99.6 99.7 74.0

Table 4: Comparison of file access patterns.File access patterns for our corporate and engineering workloads are compared with
those of previous studies. CAMPUS and EECS [5] are university NFS mail server and home directory workloads, respectively.
Sprite [3], Ins and Res [24] are university computer lab workloads. NT [29] is a combination of development and scientific
workloads.

Table 4 shows a remarkable increase in the percentage
of read-write I/O and bytes transferred. Most previous
studies observed less than 7% of total bytes transferred
to files accessed read-write. However, we find that both
our corporate and engineering workloads have over 20%
of bytes transferred in read-write accesses. Furthermore,
45.9% of all corporate I/Os and 32.1% of all engineer-
ing I/Os are in read-write accesses. This shows a di-
version from the read-only oriented access patterns of
past workloads. When looking closer at read-write ac-
cess patterns we find that sequentiality has also changed;
78.3% and 50.0% of bytes are transferred sequentially as
compared to roughly 1% of bytes in past studies. How-
ever, read-write patterns are still very random relative to
read-only and write-only patterns. These changes may
suggest that network file systems store a higher fraction
of mutable data, such as actively changing documents,
which make use of the centralized and shared environ-
ment and a smaller fraction of system files, which tend to
have more sequential read accesses. These changes may
also suggest that the sequential read-oriented patterns for
which some file systems are designed [16] are less preva-
lent in network file systems, and write-optimized file sys-
tems [11, 25] may be better suited.Observation 2Read-
write access patterns are much more frequent compared
to past studies.

4.3.2 Sequentiality Analysis

We next compared the sequential access patterns found
in our workloads with past studies. A sequential run
is defined as a series of sequential I/Os to a file. Fig-
ure 2(a) shows the distribution of sequential run lengths.
We see that sequential runs are short for both workloads,
with almost all runs shorter than 100 KB, consistent with

past studies. This suggests that file systems should con-
tinue to optimize for short sequential common-case ac-
cesses. However, Figure 2(b), which shows the distri-
bution of bytes transferred during sequential runs, has a
very different implication, indicating that many bytes are
transferred in long sequential runs: between 50–80% of
bytes are transferred in runs of 10 MB or less. In addi-
tion, the distribution of sequential runs for the engineer-
ing workload is long-tailed, with 8% of bytes transferred
in runs longer than 400 MB. Interestingly, read-write se-
quential runs exhibit very different characteristics from
read-only and write-only runs: most read-write bytes are
transferred in much smaller runs. This implies that the
interactive nature of read-write accesses is less prone to
very large transfers, which tend to be mostly read-only or
write-only. Overall, we found that most bytes are trans-
ferred in much larger runs—up to 1000 times longer—
when compared to those observed in past studies, though
most runs are short. Our results suggest file systems must
continue to optimize for small sequential access, though
they must be prepared to handle a small number of very
large sequential accesses. This also correlates with the
heavy-tailed distributed of file sizes, which we discuss
later; for every large sequential run there must be at least
one large file. Observation 3 Bytes are transferred in
much longer sequential runs than in previous studies.

We now examine the relationship between request
sizes and sequentiality. In Figure 3(a) and Figure 3(b) we
plot the number of bytes transferred from a file against
the sequentiality of the transfer. This is measured using
the sequentiality metric: the fraction of bytes transferred
sequentially, with values closer to one meaning higher
sequentiality. Figures 3(a) and 3(b) show this informa-
tion in a heat map in which darker regions indicate a
higher fraction of transfers with that sequentiality met-



Engineering

Sequential Run Length

10b 100b 1K 10K 100K 1M
0

0.2
0.4
0.6
0.8

1

Corporate
F

ra
ct

io
n 

of
 S

eq
ue

nt
ia

l R
un

s

0
0.2
0.4
0.6
0.8

1

All Runs Read−Write

Read−only Write−only

(a) Length of sequential runs.

Engineering

Sequential Run Length

1K 10K 100K 1M 10M 100M
0

0.2
0.4
0.6
0.8

1

Corporate

F
ra

ct
io

n 
of

 B
yt

es
 T

ra
ns

fe
rr

ed

0
0.2
0.4
0.6
0.8

1

All Runs Read−Write

Read−only Write−only

(b) Bytes transferred in sequential runs.

Figure 2: Sequential run properties.Sequential access patterns are analyzed for various sequential run lengths. Figure 2(a)
shows the length of sequential runs, while Figure 2(b) showshow many bytes are transferred in sequential runs.

Read−Only

Total Bytes Transferred per File
8K 16K 32K 64K 256K 1M 4M 8M 16M 64M 128M

S
eq

ue
nt

ia
lit

y 
M

et
ric

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Write−Only

Total Bytes Transferred per File
8K 16K 32K 64K 256K 1M 4M 8M 16M 64M 128M

Read−Write

Total Bytes Transferred per File
8K 16K 32K 64K 256K 1M 4M 8M 16M 64M 128M

> 90% 80−90% 70−80% 60−70% 50−60% 40−50% 30−40% 20−30% 10−20% 1−10%

(a) Corporate.

Read−Only

Total Bytes Transferred per File
8K 16K 32K 64K 256K 1M 4M 8M 16M 64M 128M

S
eq

ue
nt

ia
lit

y 
M

et
ric

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Write−Only

Total Bytes Transferred per File
8K 16K 32K 64K 256K 1M 4M 8M 16M 64M 128M

Read−Write

Total Bytes Transferred per File
8K 16K 32K 64K 256K 1M 4M 8M 16M 64M 128M

> 90% 80−90% 70−80% 60−70% 50−60% 40−50% 30−40% 20−30% 10−20% 1−10%

(b) Engineering.

Figure 3: Sequentiality of data transfer. The frequency of sequentiality metrics is plotted againstdifferent data transfer sizes.
Darker regions indicate a higher fraction of total transfers. Lighter regions indicate a lower fraction. Transfer types are broken
into read-only, write-only, and read-write transfers. Sequentiality metrics are grouped by tenths for clarity.

ric and lighter regions indicate a lower fraction. Each
region within the heat map represents a 10% range of the
sequentiality metric. We see from Figures 3(a) and 3(b)
that small transfers and large transfers are more sequen-
tial for read-only and write-only access, which is the case
for both workloads. However, medium-sized transfers,
between 64 KB and 4 MB, are more random. For large
and small transfers, file systems may be able to anticipate
high sequentiality for read-only and write-only access.
Read-write accesses, on the other hand, are much more
random for most transfer sizes. Even very large read-

write transfers are not always very sequential, which fol-
lows from our previous observations in Figure 2(b), sug-
gesting that file systems may have difficulty anticipating
the sequentiality of read-write accesses.

Next, we analyze the relationship between file size and
access pattern by examining the size of files at open time
to determine the most frequently opened file sizes and
the file sizes from which most bytes are transferred. It
should be noted that since we only look at opened files,
it is possible that this does not correlate to the file size
distribution across the file system. Our results are shown



File Size at Open

0 100 1K 10K 100K 1M 10M 100M 1GBF
ra

ct
io

n 
of

 F
ile

s 
O

pe
ne

d

0
0.2
0.4
0.6
0.8

1

Corporate Engineering

(a) Open requests by file size.

Engineering

File Size at Open

10 100 1K 10K 100K 1M 10M 100M 1GB
0

0.2
0.4
0.6
0.8

1

Corporate

F
ra

ct
io

n 
of

 B
yt

es
 T

ra
ns

fe
rr

ed

0
0.2
0.4
0.6
0.8

1

Total Entire File

Sequential Random

(b) Bytes transferred by file size.

Figure 4: File size access patterns. The distribution of open
requests and bytes transferred are analyzed according to file
size at open. Figure 4(a) shows the size of files most frequently
opened. Figure 4(b) shows the size of files from which most
bytes are transferred.

in Figures 4(a) and 4(b). In Figure 4(a) we see that 57.5%
of opens in the corporate workload are to newly-created
files or truncated files with zero size. However, this is not
the case in the engineering workload, where only 6.3% of
opens are to zero-size files. Interestingly, both workloads
find that most opened files are small; 75% of opened
files are smaller than 20 KB. However, Figure 4(a) shows
that most bytes are transferred from much larger files. In
both workloads, we see that only about 60% of bytes are
transferred from files smaller than 10 MB. The engineer-
ing distribution is also long-tailed with 12% of bytes be-
ing transferred from files larger than 5 GB. By compari-
son, almost all of the bytes transferred in previous studies
came from files smaller than 10 MB. These observations
suggest that larger files play a more significant role in
network file system workloads than in those previously
studied. This may be due to frequent small file requests
hitting the local client cache. Thus, file systems should
still optimize small file layout for frequent access and
large file layout for large transfers.Observation 4Bytes
are transferred from much larger files than in previous
studies.

Open Duration

1ms 10ms 100ms 1s 10s 50sF
ra

ct
io

n 
of

 O
pe

ne
d 

F
ile

s

0
0.2
0.4
0.6
0.8

1

Corporate Engineering

Figure 5: File open durations.The duration of file opens is an-
alyzed. Most files are opened very briefly, although engineering
files are opened slightly longer than corporate files.

Engineering

File Lifetime

1s 10s 1m 10m 1h 5h 24h
0

0.2
0.4
0.6
0.8

1

Corporate

F
ra

ct
io

n 
of

 C
re

at
ed

 F
ile

s

0
0.2
0.4
0.6
0.8

1

All Created Files Deleted Files

Explicitly Deleted Truncated Files

Figure 6: File lifetimes. The distributions of lifetimes for
all created and deleted files are shown. Files may be deleted
through explicit delete request or truncation.

Figure 5 shows the distribution of file open durations.
We find that files are opened for shorter durations in the
corporate workload than in the engineering workload. In
the corporate workload, 71.1% of opens are shorter than
100 ms, but just 37.1% are similarly short in the engi-
neering workload. However, for both workloads most
open durations are less than 10 seconds, which is similar
to observations in past studies. This is also consistent
with our previous observations that small files, which
likely have short open durations, are most frequently ac-
cessed.

4.3.3 File Lifetime

This subsection examines how file lifetimes have
changed as compared to past studies. In CIFS, files
can be either deleted through an explicit delete request,
which frees the entire file and its name, or through trun-
cation, which only frees the data. Figure 6 shows the
distribution of file lifetimes, broken down by deletion
method. We find that most created files live longer than
24 hours, with 57.0% and 64.9% of corporate and engi-
neering files persisting for more than a day. Both dis-



tributions are long-tailed, meaning many files live well
beyond 24 hours. However, files thatare deleted usually
live less than a day: only 18.7% and 6.9% of eventually-
deleted files live more than 24 hours. Nonetheless, com-
pared to past studies in which almost all deleted files live
less than a minute, deleted files in our workloads tend to
live much longer. This may be due to fewer temporary
files being created over the network. However, we still
find some files live very short lifetimes. In each work-
load, 56.4% and 38.6% of deleted files are deleted within
100 ms of creation, indicating that file systems should ex-
pect fewer files to be deleted and files that live beyond
than a few hundred milliseconds to have long lifetimes.
Observation 5 Files live an order of magnitude longer
than in previous studies.

4.4 File I/O Properties

We now take a closer look at the properties of file I/O,
where, as defined in Section 4.1, an I/O request is de-
fined as any single read or write operation. We begin
by looking at per-file, per-session I/O inter-arrival times,
which include network round-trip latency. Intervals are
categorized by the type of requests (read or write) that
bracket the interval; the distribution of interval lengths
is shown in Figure 7(a). We find that most inter-arrival
times are between 100µs and 100 ms. In fact, 96.4% and
97.7% of all I/Os have arrival times longer than 100µs
and 91.6% and 92.4% are less than 100 ms for corporate
and engineering, respectively. This tight window means
that file systems may be able to make informed decisions
about when to prefetch or flush cache data. Interestingly,
there is little distinction between read-read or read-write
and write-read or write-write inter-arrival times. Also,
67.5% and 69.9% of I/O requests have an inter-arrival
time of less than 3 ms, which is shorter than some mea-
sured disk response times [23]. These observations may
indicate cache hits at the server or possibly asynchronous
I/O. It is also interesting that both workloads have simi-
lar inter-arrival time distributions even though the hard-
ware they are running is of different classes, a mid-range
model versus a high-end model.

Next, we examine the distribution of bytes transferred
by a single I/O request. As Figure 7(b) shows, most
requests transfer less than 8 KB, despite a 64 KB max-
imum request size in CIFS. This distribution may vary
between CIFS and NFS since each buffers and schedules
I/O differently. The distribution in Figure 7(b) increases
for only a few I/O sizes, indicating that clients generally
use a few specific request sizes. This I/O size informa-
tion can be combined with I/O inter-arrival times from
Figure 7(a) to calculate a distribution of I/Os per-second
(IOPS) that may help file systems determine how much
buffer space is required to support various I/O rates.

Engineering

Per−File I/O Inter−Arrival Times

100us 1ms 10ms 100ms 1s
0

0.2
0.4
0.6
0.8

1

Corporate

F
ra

ct
io

n 
of

 I/
O

s 0
0.2
0.4
0.6
0.8

1

All I/O R−R R−W W−R

W−W

(a) Per-file I/O inter-arrival times.

I/O Request Size

8K 16K 24K 32K 40K 48K 56K 64K
F

ra
ct

io
n 

of
 I/

O
s

0
0.2
0.4
0.6
0.8

1

Corporate Reads Corporate Writes

Engineering Reads Engineering Writes

(b) I/O request sizes.

Figure 7: File I/O properties. The burstiness and and size
properties of I/O requests are shown. Figure 7(a) shows the
I/O inter-arrival times. Figure 7(b) shows the sizes of readand
write I/O.

4.5 File Re-Opens

In this subsection, we explore how frequently files are
re-opened,i. e., opened more than once during the trace
period. Figure 8(a), shows the distribution of the num-
ber of times a file is opened. For both workloads, we
find that the majority of files, 65%, are only opened once
during the entire trace period. The infrequent re-access
of many files suggests there are opportunities for files
to be archived or moved to lower-tier storage. Further,
we find that about 94% of files are accessed fewer than
five times. However, both of these distributions are long-
tailed—some files are opened well over 100,000 times.
These frequently re-opened files account for about 7%
of total opens in both workloads.Observation 6 Most
files are not re-opened once they are closed.

We now look at inter-arrival times between re-opens
of a file. Re-open inter-arrival time is defined as the du-
ration between the last close of a file and the time it is
re-opened. A re-open is consideredconcurrentif a re-
open occurs while the file is still open (i. e.,, it has not
yet been closed). The distribution of re-open inter-arrival
times is shown in Figure 8(b). We see that few re-opens
are concurrent, with only 4.7% of corporate re-opens and



Number of Times a File is Opened

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 F
ile

s

0
0.2
0.4
0.6
0.8

1

Corporate Engineering

(a) File open frequencies.

Re−Open Inter−Arrival Times

Concurrent 10ms 1s 1m 1hr 24hr

F
ra

ct
io

n 
of

 R
e−

O
pe

ne
d 

F
ile

s

0
0.2
0.4
0.6
0.8

1

Corporate Engineering

(b) Re-open inter-arrival times.

Figure 8: File open properties. The frequency of and duration
between file re-opens is shown. Figure 8(a) shows how often
files are opened more than once. Figure 8(b) shows the time
between re-opens.

0.7% of engineering re-opens occurring on an currently-
open file. However, re-opensare temporally related to
the previous close; 71.1% and 58.8% of re-opens occur
less than one minute after the file is closed. Using this
information, file systems may be able to decide when a
file should be removed from the buffer cache or when
it should be scheduled for migration to another storage
tier. Observation 7If a file is re-opened, it is temporally
related to the previous close.

4.6 Client Request Distribution

We next examine the distribution of file open and data
requests amongst clients; recall from Section 4.1 that
“client” refers to a unique IP address rather than an indi-
vidual user. We use Lorenz curves [14]—cumulative dis-
tribution functions of probability distributions—rather
than random variables to show the distribution of re-
quests across clients. Our results, shown in Figure 9, find
that a tiny fraction of clients are responsible for a signif-
icant fraction of open requests and bytes transferred. In
corporate and engineering, 0.02% and 0.04% of clients
make 11.9% and 22.5% of open requests and account
for 10.8% and 24.6% of bytes transferred, respectively.
Interestingly, 0.02% of corporate clients and 0.04% of
engineering clients correspond to approximately 1 client
for each workload. Additionally, we find that about 35
corporate clients and 5 engineering clients account for
close to 50% of the opens in each workload. This sug-
gests that the distribution of activity is highly skewed and

Fraction of Clients

0 0.1 0.2 0.3

F
ra

ct
io

n 
of

 A
ct

iv
ity

0
0.2
0.4
0.6
0.8

1

Corporate Opens Corporate Bytes

Engineering Opens Engineering Bytes

Figure 9: Client activity distribution The fraction of clients
responsible for certain activities is plotted.

Number of Clients

1 2 3 4 5

F
ra

ct
io

n 
of

 F
ile

ss

0.5

0.7

0.9

Corporate Engineering

(a) File sharing frequencies.

Open Inter−Arrival Times

Concurrent 1ms 1s 1m 1hr 24hr

F
ra

ct
io

n 
of

 F
ile

s

0
0.2
0.4
0.6
0.8

1

Corporate Engineering

(b) Sharing inter-arrival times.

Figure 10: File sharing properties. We analyze the frequency
and temporal properties of file sharing. Figure 10(a) shows the
distribution of files opened by multiple clients. Figure 10(b)
show the duration between shared opens.

that file systems may be able to take advantage of this in-
formation for doing informed allocation of resources or
quality of service planning.Observation 8A small frac-
tion of clients account for a large fraction of file activity.

4.7 File Sharing

This subsection looks at the extent of file sharing in our
workloads. A file is shared when two or more clients
open the same fileat some timeduring the trace period;
the sharing need not be concurrent. Since we can only
distinguish IP addresses and not actual users, it is possi-
ble that two IP addresses may represent a single (human)
user and vice versa. However, the drastic skew of our
results indicates this likely has little impact on our obser-
vations. Also, we only consider opened files in our anal-
ysis; files which have only had their metadata accessed
by multiple clients are not included in the these results.



Figure 10(a) shows the distribution of the frequency
with which files are opened by multiple clients. We find
that most files are only opened by a single client. In
fact, 76.1% and 97.1% of files are only opened by one
client in corporate and engineering, respectively. Also,
92.7% and 99.7% of files are ever opened by two or
fewer clients. This suggests that the shared environment
offered by network file systems is not often taken advan-
tage of. Other methods of sharing files, such as email or
web and wiki pages, may reduce the need for clients to
share files via the file system. However, both distribu-
tions are long-tailed, and a few files are opened by many
clients. In the corporate workload, four files are opened
by over 2,000 clients and in the engineering workload,
one file is opened by over 1,500 clients. This shows that,
while not common, sharing files through the file system
can be heavily used on occasion.Observation 9 Files
are infrequently accessed by more than one client.

In Figure 10(b) we examine inter-arrival times be-
tween different clients opening a file. We find that con-
current (simultaneous) file sharing is rare. Only 11.4%
and 0.2% of shared opens from different clients were
concurrent in corporate and engineering, respectively.
When combined with the observation that most files are
only opened by a single client, this suggests that syn-
chronization for shared file access is not often required,
indicating that file systems may benefit from looser lock-
ing semantics. However, when examining the duration
between shared opens we find that sharing does have a
temporal relationship in the corporate workload; 55.2%
of shared opens occur within one minute of each other.
However, this is not true for engineering, where only
4.9% of shared opens occur within one minute.

We now look at the manner (read-only, write-only, or
read-write) with which shared files are accessed. Fig-
ure 11 shows the usage patterns for files opened by multi-
ple clients. Gaps are present where no files were opened
by that number of clients. We see that shared files are
accessed read-only the majority of the time. These may
be instances of reference documents or web pages that
are rarely re-written. The number of read-only accesses
slightly decreases as more clients access a file and a read-
write pattern begins to emerge. This suggests that files
accessed by many clients are more mutable. These may
be business documents, source code, or web pages. Since
synchronization is often only required for multiple con-
current writers, these results further argue for loose file
system synchronization mechanisms.Observation 10
File sharing is rarely concurrent and mostly read-only.

Finally, we analyze which clients account for the most
opens to shared files. Equality measures how open
requests are distributed amongst clients sharing a file.
Equal file sharing implies all sharing clients open the
shared file an equal number of times. To analyze equal-

Engineering

Number of Clients
0 10 20 30 40 50

0
0.2
0.4
0.6
0.8

1

Corporate

U
sa

ge
 P

at
te

rn
 P

er
ce

nt
ag

e

0
0.2
0.4
0.6
0.8

1

Read−Only Write−Only Read−Write

Figure 11: File sharing access patterns.The fraction of read-
only, write-only, and read-write accesses are shown for differ-
ing numbers of sharing clients. Gaps are seen where no files
were shared with that number of clients.

Engineering

Number of Clients

0 10 20 30 40 50 60 70 80 90 100
0

0.2
0.4
0.6
0.8

1

Corporate

G
in

i C
oe

ffi
ci

en
t

0
0.2
0.4
0.6
0.8

1

Figure 12: User file sharing equality. The equality of sharing
is shown for differing numbers of sharing clients. The Gini
coefficient, which measures the level of equality, is near 0 when
sharing clients have about the same number of opens to a file.
It is near 1 when clients unevenly share opens to a file.

ity, we use the Gini coefficient [9], which measures sta-
tistical dispersion, such as the inequality of income in
economic analysis. We apply the equality concept to how
frequently a shared file is opened by a client. Lower co-
efficients mean sharing clients open the file more equally
(the same number of times), and higher coefficients mean
a few clients account for the majority of opens. Figure 12
shows Gini coefficients for various numbers of shared
clients. We see that, as more clients open a file, the level
of equality decreases, meaning few clients begin to dom-
inate the number of open requests. Gini coefficients are
lower, less than 0.4, for files opened by fewer than 20
clients, meaning that when a few clients access a file,
they each open the file an almost equal number of times.
As more clients access the file, a small number of clients
begin to account for most of the opens. This may indicate



that as more clients share a file, it becomes less reason-
able for all sharing clients to access the file evenly, and a
few dominate clients begin to emerge.

4.8 File Type and User Session Patterns

There have been a number of attempts to make layout,
caching, and prefetching decisions based on how specific
file types are accessed and the access patterns of certain
users [6, 17]. In this subsection, we take a closer at how
certain file types are accessed and the access patterns that
occur between when a user begins a CIFS “user session”
by logging on and when they log-off. Our emphasis is
on whether file types or users have common access pat-
terns that can be exploited by the file system. We begin
our analysis by breaking down file type frequencies for
both workloads. Figures 13(a) and 13(b) show the most
frequently opened and most frequently read and written
file types. For frequently read and written file types, we
show the fraction of bytes read for that type. Files with
no discernible file extension are labeled “unknown.”

We find that the corporate workload has no file type,
other than unknown types, that dominates open requests.
However, 37.4% of all opens in the engineering work-
load are for C header files. Both workloads have a single
file type that consumes close to 20% of all read and write
I/O. Not surprisingly, these types correspond to generally
large files,e. g., mdb (Microsoft Access Database) files
andvmdk (VMWare Virtual Disk) files. However, we
find that most file types do not consume a significantly
large fraction of open or I/O requests. This shows that
file systems likely can be optimized for the small sub-
set of frequently accessed file types. Interestingly, there
appears to be little correlation between how frequently
a file is opened and how frequently it is read or written.
Only three corporate and two engineering file types ap-
pear as both frequently opened and frequently read or
written; themdb andvmdk types only constitute 0.5%
and 0.08% of opens. Also, it appears file types that are
frequently read or written are mostly read.

We now analyze the hypothesis that file systems can
make use of file type and user access patterns to improve
layout and prefetching [5, 6, 17]. We do so examiningac-
cess signatures, a vector containing the number of bytes
read, bytes written, and sequentiality metric of a file ac-
cess. We start by defining an access signature for each
open/close pair for each file type above, we then apply
K-means clustering [15] to the access signatures of each
file type. K-means groups access signatures with similar
patterns into unique clusters with varying densities. Our
results are shown in Figure 14. For clarity we have cat-
egorized access signatures by the access type: read-only,
write-only, or read-write. We further group signatures
by their sequentiality metric ranges: 1–0.81 is consid-

% of Opens
  0%  10% 20% 30% 40% 50%

gif
zip

html
doc

cnm
xml
txt
ini
xls

unknown

1.7%

2.2%

2.6%

2.9%

3.2%

3.5%

4.3%

6.2%

10.3%

43.8%

  0%  25%  50%  75% 100%

exe
jpg
xml
zip

dsx
adp
doc
xls

unknown
mdb

1.7%

1.8%

2.3%

3.6%

3.8%

7.1%

11.1%

14.2%

14.6%

23.5%

96.9%

97%

23.1%

92.2%

16.7%

99.5%

98.2%

95.5%

33.3%

94.3%

% of I/O Requests % of Read Bytes

(a) Corporate.

% of Opens
  0%  10% 20% 30% 40% 50%

suo
thpl
dbo
hpp

unknown
o
c

jpg
d
h

1.6%

2.1%

2.8%

2.8%

3.6%

4.8%

6.5%

6.8%

8.2%

37.4%

  0%  25%  50%  75% 100%

unknown
mp3
tmp
exe
iso
dla
jpg

h
pst

vmdk

1.8%

1.8%

1.9%

2.6%

3.2%

4.6%

7.1%

8.9%

14.9%

19.4%

78.7%

84.4%

37.5%

66.7%

84.8%

9.1%

90.8%

99.9%

86.7%

58.3%

% of I/O Requests % of Read Bytes

(b) Engineering.

Figure 13: File type popularity. The histograms on the right
show which file types are opened most frequently. Those on the
left show the file types most frequently read or written and the
percentage of accessed bytes read for those types.

ered highly sequential, 0.8–0.2 is considered mixed se-
quentiality, and 0.19–0 is considered highly random. Fi-
nally, access signatures are categorized by the number of
bytes transferred; access signatures are considered small
if they transfer no more than 100 KB and large otherwise.
Darker regions indicate the file type has a higher fraction
of access signatures with those properties shown on the
y-axis, and lighter regions indicate fewer signatures with
those characteristics.

Figure 14 shows that most file types have several dis-
tinct kinds of access patterns, rather than one as previ-
ously presumed. We also see that each type has multiple
patterns that are more frequent than others, suggesting
that file systems may not be able to properly predict file
type access patterns using only a single pattern. Inter-
estingly, small sequential read patterns occur frequently
across most of the file types, implying that file systems
should be optimized for this pattern, as is often already
done.Observation 11Most file types do not have a sin-
gle pattern of access.

Surprisingly, file types such asvmdk that consume a
large fraction of total I/Os are frequently accessed with
small sequential reads. In fact, 91% of allvmdk ac-
cesses are of this pattern, contradicting the intuition de-
rived from Figure 13(b) thatvmdk files have large ac-
cesses. However, a much smaller fraction ofvmdk ac-
cesses transfer huge numbers of bytes in highly random
read-write patterns. Several patterns read and write over



Corporate

ad
p

cn
m

do
c

ds
x

ex
e

gi
f

ht
m

l

in
i

jp
g

m
db ps

t

su
o

tm
p tx
t

xl
s

xm
l

zi
p

un
kn

ow
n

Seq:Small
Seq:Large
Mix:Small
Mix:Large
Ran:Small
Ran:Large
Seq:Small
Seq:Large
Mix:Small
Mix:Large
Ran:Small
Ran:Large
Seq:Small
Seq:Large
Mix:Small
Mix:Large
Seq:Small
Seq:Large

R
ea

d−
O

nl
y

R
ea

d−
W

rit
e

W
rit

e−
O

nl
y

Engineering

c d

db
o

dl
a

ex
e h

hp
p

is
o

jp
g

m
p3

o

ps
t

su
o

th
pl

tm
p

vm
dk

un
kn

ow
n

> 90% 80−90% 70−80% 60−70% 50−60% 40−50% 30−40% 20−30% 10−20% 1−10%

Figure 14: File type access patternsThe frequency of access patterns are plotted for various filetypes. Access patterns are
categorized into 18 groups. Increasingly dark regions indicate higher fractions of accesses with that pattern.

10 GB of data with a sequentiality metric less than 0.5,
showing that frequent patterns may not be representative
of the significant patterns in terms of bytes transferred or
sequentiality. This argues that file systems should antic-
ipate several patterns of access for any file type if layout
or prefetching benefits are to be gained. Also, it is crit-
ical that they identify transitions between patterns. For
example, a file system may, by default, prefetch data for
vmdk files in small chunks: 100 KB or less. However,
when over 100 KB of avmdk file is accessed this signals
the likely start of a very large transfer. In this case, the
file system must properly adjust its prefetching.

Our observation that many file types exhibit several
access patterns of varying frequency and significance
draws an interesting comparison to the results in Table 4.
Table 4 shows significant read-write I/O and byte trans-
fer activity. However, file types in Figure 14 rarely have
read-write patterns. This implies, read-write file accesses
are, in general, uncommon, however when they do occur,
a large number of bytes are accessed.

Next, we apply the same K-means clustering approach
to access signatures of access patterns that occur within
a CIFS user session. Recall that CIFS users begin a con-
nection to the file server by creating an authenticated user
session and end by eventually logging off. We define
signatures for all accesses performed while the user is
logged on. However, we only consider sessions in which
bytes are transferred. The CIFS client opens short, tem-
porary sessions for various auxiliary functions, which we
exclude from this study as they do not represent a normal
user log-in. Like file types, user sessions have several
common patterns and no single pattern can summarize all
of a user’s accesses. The majority of user sessions have
read-write patterns with less than 30 MB read and 10 MB
written with a sequentiality metric close to 0.5, while a
few patterns have much more significant data transfers
that read and write gigabytes of data.

5 Design Implications

In this section we explore some of the possible impli-
cations of our trace analysis on network file system de-
signs. We found that read-write access patterns have
significantly increased relative to previous studies (see
Section 4.3.1). Though we observed higher sequential-
ity in read-write patterns than past studies, they are still
highly random compared to read-only or write-only ac-
cess patterns (see Section 4.3.1). In contrast, a num-
ber of past studies found that most I/Os and bytes are
transferred in read-only sequential access patterns [3, 21,
29], which has impacted the designs of several file sys-
tems [16, 19]. Our observed shift towards read-write ac-
cess patterns suggests file systems should look towards
improving random access performance, perhaps through
alternative media, such as flash. In addition, we observed
that the ratio of data read to data written is decreasing
compared to past studies [3, 5, 24] (see Section 4.2). This
decrease is likely due to increasing effectiveness of client
caches and fewer read-heavy system files on network
storage. When coupled with increasing read-write access
patterns, write-optimized file systems, such as LFS [25]
and WAFL [11], or NVRAM write caching appear to be
good designs for network file systems.

We also observed that files are infrequently re-opened
(see Section 4.5) and are usually accessed by only one
client (see Section 4.7). This suggests that caching strate-
gies which exploit this, such as exclusive caching [31],
may have practical benefits. Also, the limited reuse
of files indicates that increasing the size of server data
caches may add only marginal benefit; rather, file servers
may find larger metadata caches more valuable because
metadata requests made up roughly 50% of all operations
in both workloads, as Section 4.2 details.

Our finding that most created files are not deleted (see
Section 4.3.3) and few files are accessed more than once



(see Section 4.5) suggests that many files may be good
candidates for migration to lower-tier storage or archives.
This is further motivated by our observation that only
1.6 TB were transferred from 22 TB of in use storage
over three months. While access to file metadata should
be fast, this indicates much file data can be compressed,
de-duplicated, or placed on low power storage, improv-
ing utilization and power consumption, without signifi-
cantly impacting performance. In addition, our observa-
tion that file re-accesses are temporally correlated (see
Section 4.5) means there are opportunities for intelligent
migration scheduling decisions.

6 Conclusions

In this paper we presented an analysis of two large-
scale CIFS network file system workloads gathered from
enterprise-class file servers deployed in a corporate and
in an engineering environment. We compared our work-
loads to previous file system studies to understand how
file access patterns have changed and conducted a num-
ber of other experiments. We found that read-write file
access patterns and random file access are far more com-
mon than previously thought, and that most file storage
remains unused, even over a three month period. Our
observations on sequentiality, file lifetime, file reuse and
sharing, and request type distribution also differ from
those in earlier studies. Based on these observations, we
made several recommendations for improving network
file server design to handle the workload of modern cor-
porate and engineering environments.

Acknowledgments

This work was supported in part by the Department of
Energy under award DE-FC02-06ER25768, the NSF un-
der award CCF-0621463, and industrial sponsors of the
Storage Systems Research Center at UC Santa Cruz, in-
cluding Agami Systems, Data Domain, Hewlett Packard,
LSI Logic, NetApp, Seagate, and Symantec. We would
also like to thank our colleagues in the SSRC and
NetApp’s Advanced Technology Group, our shepherd
Jason Flinn, and the anonymous reviewers for their in-
sightful feedback, which greatly improved the quality of
the paper.

References

[1] A. Aggarwal and K. Auerbach. Protocol standard for a
netbios service on a tcp/udp transport. IETF Network
Working Group RFC 1001, March 1987.

[2] N. Agrawal,et al. A five-year study of file-system meta-
data. InProc. of FAST ’07, Feb. 2007.

[3] M. G. Baker, et al. Measurements of a distributed file
system. InProc. SOSP ’91, Oct. 1991.

[4] J. R. Douceur and W. J. Bolosky. A large-scale study of
file-system contents. InProc. of SIGMETRICS ’99, 1999.

[5] D. Ellard,et al.Passive NFS tracing of email and research
workloads. InProc. of FAST ’03. 2003.

[6] D. Ellard,et al. Attribute-based prediction of file proper-
ties. Technical Report TR-14-03, Harvard, 2004.

[7] K. Evans and G. H. Kuenning. A study of irregularities in
file-size distributions. InProceedings of SPECTS ’02.

[8] T. J. Gibson and E. L. Miller. Long-term file activity pat-
terns in a UNIX workstation environment. InProc. of the
15th IEEE Symposium on Mass Storage Systems, pages
355–372, Mar. 1998.

[9] C. Gini. Measurement of inequality and incomes.The
Economic Journal, 31:124–126, 1921.

[10] S. Gribble,et al. Self-similarity in file systems: Measure-
ment and applications. InProc. of SIGMETRICS ’98.

[11] D. Hitz, J. Lau, and M. Malcom. File system design for
an NFS file server appliance. InProc. of USENIX ’94.

[12] J. J. Kistler and M. Satyanarayanan. Disconnected oper-
ation in the Coda file system.ACM ToCS, 10(1), 1992.

[13] P. J. Leach and D. C. Naik. A common internet file system
(cifs/1.0) protocol. IETF Network Working Group RFC
Draft, March 1997.

[14] M. O. Lorenz. Methods of measuring the concentration
of wealth. Publications of the American Statistical Asso-
ciations, 9:209–219, 1905.

[15] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. InProc. of the 5th
Berkeley Symp. on Mathematical Statistics and Probabil-
ity, pages 281–297, 1967. University of California Press.

[16] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX.ACM ToCS, 2(3), Aug. 1984.

[17] M. Mesnier,et al. File classification in self-* storage sys-
tems. InProc. of ICAC ’04.

[18] S. J. Mullender and A. S. Tanenbaum. Immediate files.
Software–Practice and Experience, 14(4), April 1984.

[19] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching
in the Sprite network file system.ACM ToCS, 6(1), 1988.

[20] B. C. Neumann,et al. Kerberos: An authentication ser-
vice for open network systems. InProc. of USENIX ’88.

[21] J. K. Ousterhout,et al.A trace-driven analysis of the Unix
4.2 BSD file system. InProc. of SOSP ’85, 1985.

[22] K. K. Ramakrishnan, P. Biswas, and R. Karedla. Analysis
of file i/o traces in commercial computing environments.
In Proc. of SIGMETRICS ’92, 1992.

[23] A. Riska and E. Riedel. Disk drive level workload char-
acterization. InProc. of USENIX ’06, May 2006.

[24] D. Roselli, J. Lorch, and T. Anderson. A comparison of
file system workloads. InProc. of USENIX ’00.

[25] M. Rosenblum and J. K. Ousterhout. The design and im-
plementation of a log-structured file system.ACM ToCS,
10(1):26–52, Feb. 1992.

[26] M. Satyanarayanan. A study of file sizes and functional
lifetimes. InProc. of SOSP ’81, Dec. 1981.

[27] Spec benchmarks. http://www.spec.org/benchmarks.html.
[28] Tcpdump/libpcap. http://www.tcpdump.org/.
[29] W. Vogels. File system usage in Windows NT 4.0. In

Proc. of SOSP ’99, Dec. 1999.
[30] Wireshark: Go deep. http://www.wireshark.org/.
[31] T. M. Wong and J. Wilkes. My cache or yours? making

storage more exclusive. InProc. of USENIX ’02.
[32] M. Zhou and A. J. Smith. Analysis of personal computer

workloads. InProc. of MASCOTS ’99, 1999.


