
Scalable Write Allocation in the WAFL File System

Matthew Curtis-Maury, Ram Kesavan, and Mrinal K. Bhattacharjee
NetApp, Inc

Abstract—
Enterprise storage systems must scale to increasing core
counts to meet stringent performance requirements. Both
the NetApp® Data ONTAP® storage operating system and
its WAFL® file system have been incrementally paral-
lelized over the years, but some components remain single-
threaded. The WAFL write allocator, which is responsible
for assigning blocks on persistent storage to dirty data in a
way that maximizes write throughput to the storage media,
is single-threaded and has become a major scalability
bottleneck. This paper presents a new write allocation
architecture, White Alligator, for the WAFL file system that
scales performance on many cores. We also place the new
architecture in the context of the historical parallelization
of WAFL and discuss the architectural decisions that have
facilitated this parallelism. The resulting system demon-
strates increased scalability that results in throughput
gains of up to 274% on a many-core storage system.

I. INTRODUCTION

Enterprise storage systems are expected to achieve high
performance, and the NetApp Data ONTAP storage
operating system must constantly deliver performance
gains on cutting-edge platforms to remain competitive.
Such systems employ an ever-increasing number of
cores, and large-scale parallelization is required to trans-
late the increased computational potential into higher
throughput and lower latency. Data ONTAP and its
Write Anywhere File Layout (WAFL) file system [1]
were initially single-threaded, but they have been in-
crementally parallelized over time to deliver scalable
performance on each new platform.

A key component of any file system is its write al-
locator, which is responsible for determining where
to write data on persistent storage to maximize write
throughput and subsequent read performance. Over the
years, WAFL processing was parallelized [2], but write
allocation remained single-threaded. Because WAFL
always writes data to new locations on disk, the pressure
placed on the write allocator is acute, as we show in
Section V. Conventional wisdom in the literature is
that file systems and write allocation are not scalable
and are extremely difficult to parallelize [3], [4], [5],
[6], [7]. Therefore, scalable designs typically involve
partitioning the file space and replicating the storage
stack for each partition [5], [6], [7].

In this paper, we describe a scalable write allocator
for WAFL, called White Alligator, that was specifically
designed for the many-core era. The key to the new
architecture is a division between: (1) the infrastructure
that deals with the bookkeeping required to track free
space and maximizing write throughput to the underly-
ing storage media and (2) a set of cleaner threads that
assign persistent storage locations to data. We present
the novel approaches used to parallelize each of these
components to eliminate the write allocation bottleneck.
White Alligator improves throughput on a many-core
platform by as much as 274%, with the potential to
scale even higher on future platforms. The presented
architecture has been shipping since 2011 and has been
running extremely reliably on more than a quarter of
a million deployed systems with different core counts
and many kinds of workloads.

We demonstrate that with a scalable architecture in
place, a traditional file system design can run efficiently
on many cores. We make the following contributions:

• We provide an inside view of the internals of the
WAFL file system and the details of WAFL write-
allocation infrastructure and mechanics that are
relevant to its parallelization.

• We present a collection of techniques that have
been successfully deployed to parallelize the
WAFL write allocator for high performance in a
many-core system.

• We evaluate the performance of the parallelized
infrastructure on real many-core storage systems.

Section II presents background material on WAFL and
write allocation. Section III provides a brief history
of parallelism in WAFL. Section IV presents the new
parallel White Alligator architecture and its advantages.
Section V evaluates White Alligator performance and
Section VI surveys the related work.

II. BACKGROUND

A. Write Allocation in Storage Systems

Storage space on devices is typically exposed as an
addressable number space referencing fixed size blocks.
A file system’s data is laid out in this space along



with metadata to track the location of data. Metadata
is frequently accessed to retrieve and operate on the
user data, and high-performance storage systems use
advanced techniques to optimize data and metadata
accesses. Write allocation is the process by which a
storage system chooses where on persistent media to
write data and metadata, as well as the underlying
mechanisms to perform the write. The write allocator
must maximize the efficiency of both writing to disk
and the performance of subsequent reads.

B. Background on the WAFL File System

WAFL is the file system within the Data ONTAP op-
erating system. WAFL houses and exports multiple file
systems called NetApp FlexVol® volumes from within a
shared pool of storage called an aggregate. An aggregate
is made up of a set of RAID groups, each of which is
configured with one or more parity drives. In WAFL, all
metadata and user data (including logical units exported
to SAN clients) are stored in files, called metafiles and
user files, respectively. Metadata to track free blocks
and other information critical to allocating and freeing
blocks is stored in allocation metafiles. Each file is
represented by an inode that tracks its attributes and
the location of its data blocks on persistent storage. A
block of a file is represented in memory by a buffer. The
file system is a tree of blocks rooted at the superblock.

A block in a WAFL file system is addressed by its
volume block number, or VBN. WAFL uses physical
VBNs to refer to blocks in the aggregate, which are
mapped to a location on persistent media. A block in a
FlexVol volume has both a VBN to specify the physical
location of the block and a Virtual VBN to specify the
block’s offset within the volume. Previous work has
provided detailed descriptions of WAFL [1], [8].

C. Write Allocation in WAFL

In file systems that write data in place, data must be
assigned a block only once. However, copy-on-write
(COW) file systems—such as WAFL, LFS, ZFS, and
Btrfs—must allocate blocks for every incoming write.
That is, even overwritten data results in write allocation
because all data is written to a new location, as in
LFS [9].

WAFL accumulates and flushes thousands of operations
worth of data to persistent storage, which allows better
layout decisions and amortizes the associated overhead.
Instead of delaying the client reply until the data reaches
persistent storage as part of the next batch, operations
that update file system state are logged in nonvolatile
RAM, which allows the system to reply to client writes
very quickly. Writing a consistent collection of changes

as a single transaction in WAFL is known as a consis-
tency point, or simply CP [1], [8]. Each CP is a self-
consistent point-in-time image of the file system that
includes updates since the previous CP. Therefore, in-
memory data that is to be included in a CP is atomically
identified at the start of the CP and isolated from further
modifications until the data reaches persistent storage. In
order to allow client traffic to continue to make updates
during a CP, copies of data can be made on demand.
That is, any attempts to change an inode’s properties or
a buffer’s contents during a CP result in the object being
COW’d in memory, with a read-only copy being written
to persistent storage and a writeable version available to
accept modifications. In such cases, changes made after
the start of a CP are persisted during the subsequent
CP. Any metafile updates made on behalf of a CP must
reach persistent storage as part of that same CP.

Writing to a file “dirties” the in-memory inode as-
sociated with the file and adds it to a list of dirty
inodes to process in the next consistency point. Since
the WAFL file system stores all metadata as files, the
primary function of a CP is to flush changed state—i.e.,
all dirty buffers—from each dirty inode to persistent
storage, which is known as inode cleaning. Each dirty
buffer is cleaned by allocating a free block, writing the
buffer to this chosen location, and freeing the previously
used block. Once all dirty inodes for files and metafiles
have been cleaned, the newly written data is atomically
persisted by overwriting the superblock in place [1], [8].
If the system crashes before the superblock is written,
the file system state from the most recently completed
CP is loaded and all subsequent operations are replayed
from the log stored in nonvolatile RAM.

III. HISTORY OF PARALLELISM IN WAFL

To understand the parallelization of write allocation
work in WAFL, it is first necessary to put in place the
foundation of the parallelization of WAFL file system
processing and the parallelization of the Data ONTAP
operating system in which it resides.

A. Early Parallelization of Data ONTAP

Data ONTAP was first parallelized by dividing each
subsystem in the operating system into a private domain,
where only a single thread from a given domain could
execute at a time. Domains were defined such that shar-
ing of global data between different domains was rare.
For example, domains were created for RAID, network-
ing, storage, file system (WAFL), and the protocols, and
communication between domains used message passing.
This approach allowed scaling to multiple cores with
minimal code rewrite, because little explicit locking



was required. This model provided sufficient perfor-
mance because systems at the time had very few cores
(e.g., four), so parallelism within the file system was
not required. Over time, domains were incrementally
parallelized as they became scalability bottlenecks and
additional synchronization was introduced.

B. Classical Waffinity

As core counts increased to eight, serialized execution
of file system operations became a scalability bottle-
neck. To parallelize the WAFL domain, we imple-
mented a multiprocessor model called Waffinity, the first
version of which was called Classical Waffinity and
shipped with Data ONTAP 7.2 in 2006. In Classical
Waffinity, the file system message scheduler defined
message execution contexts called affinities. User files
were partitioned into file stripes that corresponded to a
contiguous range of blocks in the file, and these were
rotated over a set of Stripe affinities. This model ensured
that messages operating in different Stripe affinities
were guaranteed to be working on different partitions of
user files, so they could be safely executed in parallel
by Waffinity threads executing on different cores. Any
message operating outside of a single file stripe ran in
a Serial affinity that excluded all Stripe affinities and
serialized all WAFL processing. This data partitioning
provided an implicit coarse-grained synchronization that
eliminated the need for explicit locking on partitioned
objects, thereby greatly reducing the complexity of
the programming model. Some minimal locking was
required for data structures shared between Stripe affini-
ties. The benefit of this model came from the fact that
most performance-critical messages at the time, such as
user file reads and writes, could be executed in Stripe
affinities.

C. Parallelized Inode Cleaning

After the WAFL parallelization just described, inode
cleaning ran in the Serial affinity. That is, the process of
assigning VBNs to dirty buffers and writing the data out
to persistent storage prevented the execution of client
operations such as user file reads and writes. The next
parallelization of WAFL was the introduction of a single
inode cleaner thread that ran in parallel with Waffinity
threads and cleaned inodes. This work shipped in Data
ONTAP 7.3 in 2008 on platforms with 8-12 cores.

For each dirty buffer in a dirty inode, the cleaner thread
identified a single VBN that satisfied the persistent stor-
age layout objectives by reading the allocation bitmaps.
The thread then updated user file metadata to reflect the
new location of its data; user data and metadata buffers
are COW’d so the cleaner thread modifies the current

CP’s copy of user metadata while client operations mod-
ified the other copy. Finally, the cleaner thread made two
updates to allocation bitmaps: (1) to reflect the VBN
that was allocated and (2) to free the previously used
VBN, since an overwrite in WAFL frees the old block.
For example, WAFL maintains a metafile containing one
bit for each block in the file system to track whether the
corresponding block is used or free. Thus, allocations
and frees of VBNs toggle bits in this metafile and these
updates were made by the cleaner thread. A variety
of other metafiles exist that must also be updated.
The system tracked periods during which the cleaner
thread could run and disallowed access to allocation
metafiles and user file metadata from Waffinity during
these times, giving the cleaner thread exclusive access to
everything it needed. This model allowed us to quickly
parallelize inode cleaning and achieve the scalability
benefits it provided, but it left us with a complex set
of MP safety rules. For example, any operation that
updated metafiles would have to run on the cleaner
thread during certain phases if it could not delay its
execution, even if it was unrelated to file cleaning. Such
complexity continued to burden us until it was resolved
in the White Alligator architecture.

Before the introduction of the cleaner thread, cleaning
work running in the Serial affinity could directly update
a variety of global counters that were systemwide, per
aggregate, per FlexVol volume, or per file. As a simple
example, inode cleaning must decrement/increment the
number of free blocks in an aggregate. Once cleaning
was moved in parallel with WAFL processing, syn-
chronization was required around counter updates to
prevent races. Counters could be updated frequently
within the cleaner thread, and this led to excessive
overhead. Thus, cleaner threads were extended to use
loose accounting, wherein counter updates were staged
in a local token that was later applied to the global
counters in a batched fashion from within Waffinity.
Loose accounting allowed the counters’ values to de-
viate from their instantaneous logical values, and all
counter accesses had to be audited and corrected to deal
with temporary discrepancies.

D. Hierarchical Waffinity

Classical Waffinity was replaced by a new Hierarchical
Waffinity model to enable increased levels of parallelism
within WAFL. This model, which first shipped with
Data ONTAP 8.1 in 2011 on platforms with 16-20 cores,
provided a way to parallelize all types of work, beyond
the dozen operations parallelized by Classical Waffinity.
It did so by coordinating accesses to file system objects
beyond data blocks of user files.



Fig. 1: The Hierarchical Waffinity hierarchy.

The new model built a hierarchy of affinities where each
affinity was associated with certain permissions, such
as access to metadata files, that serialized execution
in the file system in Classical Waffinity (Figure 1).
The scheduler enforced execution exclusivity between
a given affinity and its children, so it only restricted
the execution of an affinity’s parents and children in
the hierarchy; all other affinities could safely run in
parallel. For example, if the Volume Logical affinity was
running, then its Stripe affinities were excluded along
with its parent Volume, Aggregate, and Serial affinities.
Other affinities, such as Volume VBN, were allowed
to run. This design ensured that no two messages
with conflicting data accesses ran concurrently, because
they ran in affinities that excluded one another. The
Aggregate, Volume, Stripe, and Range affinity types
had multiple instances under a single parent affinity,
which allowed parallel execution of messages operat-
ing on disjoint data, such as any two operations in
different aggregates, FlexVol volumes, or regions of
blocks in a file. Additional details on Waffinity and the
data managed by each affinity are available in earlier
work [2]. Section IV-B2 discusses how write allocation
was parallelized by leveraging this architecture.

In spite of the efforts to parallelize WAFL, single-
threaded write allocation had become a major scala-
bility bottleneck on many-core systems, as described in
detail in Section V. To allow Data ONTAP to scale
performance to larger core counts, it was necessary
to parallelize this critical component. It would have
been possible to move inode cleaning into Hierarchical
Waffinity. However, that would have introduced extra
complexity, because WAFL write allocation involves
assigning both a VBN and a Virtual VBN and updating
file system metadata within both the aggregate and
FlexVol volume, and therefore does not fit neatly into
any single affinity. Further, keeping inode cleaning in
parallel with the rest of WAFL maximizes cleaning par-
allelism because it bypasses the hierarchical exclusion
in Waffinity that limits when affinities can run; instead,
a cleaner thread can run at any time.

IV. THE WHITE ALLIGATOR ARCHITECTURE

In this section, we present the White Alligator archi-
tecture that allows significantly increased parallelization
of inode cleaning. This model shipped alongside Hier-
archical Waffinity in Data ONTAP 8.1 in 2011. White
Alligator achieves increased parallelism in two primary
ways: (1) it introduces multiple inode cleaner threads
than can execute concurrently and (2) it allows the
parallelization of metadata updates by migrating such
accesses to the Hierarchical Waffinity model.

To achieve these new levels of parallelism, White Alli-
gator defines a new write allocator infrastructure com-
ponent that builds collections of unused VBNs called
buckets and defines a set of operations on them to allow
cleaner threads to use the VBNs. The infrastructure runs
as messages in Waffinity to read and update metafiles,
thereby allowing that sophisticated multiprocessor ar-
chitecture to manage concurrent metadata accesses just
as it does other data and facilitating parallelism in
metafile accesses. A set of cleaner threads now use a
well-defined API exported by the infrastructure to ob-
tain and allocate unused VBNs by operating on a limited
set of lock-protected in-memory structures, and they do
not directly perform any metafile accesses. By greatly
simplifying the work done by cleaner threads and pro-
viding an MP-safe API, the White Alligator architecture
makes it possible for multiple cleaner threads to operate
concurrently on different inodes or different regions of
a single inode. Using buckets of VBNs amortizes the
overhead associated with each VBN allocation.

A. The White Alligator API

As mentioned earlier, the White Alligator architecture
creates a well-defined API that is provided by the
infrastructure and is consumed by a set of parallel
cleaner threads. Such a separation in WAFL write
allocation allows the infrastructure and cleaner threads
to be independently parallelizable, and therefore to scale
with newer platforms that have ever-more processors.
Further, this architecture brings important software de-
velopment advantages in that the division of code across
a well-defined API makes the code more maintainable
and allows the data structures to have simple MP-
safety rules. Here we provide an overview of the API;
details of each component are discussed in the following
sections.

Figure 2 presents the separation of the infrastructure and
the cleaner threads across an API composed of GET,
USE, and PUT operations that execute in the context of
cleaner threads. The infrastructure processes allocation
metafiles to find available VBNs that meet the write
allocator’s objectives and uses them to construct a set of



Fig. 2: The separation of cleaner threads and the infrastructure
via the White Alligator API.

buckets. These buckets are then enqueued in step 1 to a
lock-protected list of available buckets called the bucket
cache that is filled by the infrastructure and consumed
by the cleaner threads. Each cleaner thread begins by
assembling a list of dirty buffers from its assigned inode.
The cleaner thread then uses the GET operation in step 2
to acquire a bucket of VBNs from the bucket cache for
write allocating the dirty buffers to persistent storage.
Once the cleaner thread has acquired a bucket of VBNs,
it iterates over its list of dirty buffers in step 3 and the
USE operation assigns one VBN from the bucket to
each buffer in the list and marks the VBN as consumed
in the bucket metadata. This step also enqueues each
buffer to a per-RAID group data structure called a tetris
(described in detail in Section IV-E) that accumulates
buffers to be written to persistent storage. The cleaner
thread continues to insert buffers into the tetris until a
sufficient number have been added, at which time the
entire tetris of buffers is sent to persistent storage in
step 4. Once the cleaner thread has either consumed all
free VBNs in a bucket or run out of dirty buffers to
clean, it returns the bucket to the infrastructure. To do
so, the cleaner thread uses the PUT operation in step 5 to
enqueue the bucket onto the used bucket queue, a lock-
protected staging queue that stores buckets while they
await processing by the infrastructure. Finally, in step 6,
the infrastructure removes buckets from the used bucket
queue and updates the file system allocation metafiles
to reflect the VBNs that have been used by a cleaner
thread. After that, the bucket begins the cycle again and
the bucket is refilled with VBNs.

A similar, though simpler, process (not shown in the
figure) occurs for overwritten blocks whose VBNs must
be freed in the file system. The cleaner thread stores

the freed VBNs to a structure called a stage, which is
analogous to a bucket. When a stage is full, the cleaner
thread sends a message to the infrastructure to commit
those frees to the metafiles. Details on WAFL free space
reclamation are available in other work [10].

B. Parallelism in White Alligator

1) Parallel Cleaner Threads: The White Alligator ar-
chitecture allows cleaner threads to use a simple API
to interact with the infrastructure and assign VBNs
to dirty buffers rather than accessing and updating
metafiles directly. As a result, the operations performed
in cleaner threads are greatly simplified, which allows
multiple cleaner threads to run concurrently on different
inodes or even on different regions of a single inode.
Synchronization is required only on the bucket cache,
the tetris data structures, and the used bucket list, and
the use of buckets of VBNs amortizes this overhead.
The remaining updates performed by the cleaner thread
happen to its local bucket and to metadata that tracks
the on-disk location of a file’s data.

The previous architecture for inode cleaning could the-
oretically have been parallelized, but this would have
involved adding a considerable amount of synchro-
nization. In particular, races between multiple cleaner
threads would need to be prevented when updating
either metafiles or write allocation global state while
selecting a new VBN for each dirty buffer. White Al-
ligator instead minimizes the required synchronization,
which is mandatory in building a scalable system.

2) Infrastructure Parallelism: To support the bucket-
based API in Section IV-A, the infrastructure must: (1)
read allocation bitmap files to find free VBNs with
which to fill buckets and (2) write to allocation bitmap
files to reflect VBN allocations and frees performed by
cleaner threads. White Alligator moves all metafile pro-
cessing out of the cleaner threads into the infrastructure
running in Waffinity. Beyond simplifying the cleaner
thread work and facilitating parallelization of inode
cleaning, Waffinity-based management allows scalable
parallelization of metafile operations. As an additional
benefit, always accessing metafiles in Waffinity greatly
simplifies the MP safety rules around metafile accesses,
which carries long-term advantages in maintainability.

White Alligator provides data partitioned access to
metafiles within Hierarchical Waffinity by including
Volume VBN and Aggregate VBN affinities to coordi-
nate concurrent accesses to metadata (so named because
their files are typically indexed by VBN). Parallelism is
facilitated in four ways. First, allocation bitmaps in each
aggregate (representing VBNs) and FlexVol volume
(representing Virtual VBNs) map to different Aggregate



VBN and Volume VBN affinities, respectively. Thus, ac-
cesses to metafiles in different aggregates and volumes
are parallelized in Waffinity because threads running
in parallel on different cores can read and write to
metafiles without explicit synchronization. In contrast,
any two messages operating on the same metafile blocks
run in affinities that serialize each other, and the Waffin-
ity scheduler prevents the messages from executing in
parallel. Second, Waffinity provides a set of Range
affinities under each Volume VBN and Aggregate VBN
affinity in order to allow parallel accesses to different
blocks in metafiles of a single volume or aggregate.
Each Range affinity provides access to a range of blocks
within each metafile. The most expensive infrastruc-
ture operations were optimized to run in these Range
affinities to allow operations within a single volume or
aggregate to run in parallel. Third, client-facing data is
mapped to the Volume Logical affinity, which can run
in parallel with write allocation work in the Volume
VBN affinity (see Figure 1). This allows parallelism
between client-facing operations and write allocation
infrastructure tasks within a single volume. Fourth, write
allocation work in Waffinity runs in parallel with cleaner
threads performing inode cleaning.

C. Bucket Details

Buckets are the basic units of allocation that allow
the design of a simple MP-safe model for the cleaner
threads. A bucket is simply a set of contiguous VBNs
on each drive that is defined by a starting VBN and a
length, with additional metadata to track which VBNs
have already been used. The number of VBNs in a
bucket is determined by the chunk size, which is the
number of consecutive blocks to which the system
write allocates file blocks to maximize sequential read
performance. It is typically a multiple of 64 blocks.

It is possible to allocate VBNs one at a time by using
the White Alligator API (i.e., a bucket size of one).
However, using buckets with a chunk of VBNs has
several concrete advantages. First, buckets of VBNs
amortize the overhead of finding free VBNs in the
infrastructure. Second, buckets amortize the cleaner
thread synchronization that is required at the bucket
granularity, such as when GETing a new bucket, and
this reduces contention as a result. Third, using buckets
ensures that cleaner threads acquire a set of contigu-
ous VBNs, which is not possible when allocating one
at a time in a multithreaded environment. Allocating
file blocks contiguously on persistent storage improves
performance when the blocks are subsequently read
sequentially.

D. Filling Buckets with VBNs

In providing VBNs for use by cleaner threads, the
infrastructure must meet three primary objectives: (1)
minimize reads required for RAID parity computation;
(2) place consecutive file blocks contiguously on a sin-
gle drive to improve future sequential read performance;
and (3) maximize the available write throughput of the
aggregate. As discussed next, White Alligator satisfies
these goals by guaranteeing equal progress down each
drive in an aggregate and focusing allocations to the
emptiest regions of storage.

A stripe is a set of blocks belonging to the data drives
of a RAID group, one per drive, which share the same
parity block on the parity drive. An Allocation Area
(AA) is a contiguous set of stripes. The infrastructure
selects the Allocation Area in each RAID group that
contains the most free blocks and walks the allocation
bitmaps to find free VBNs on each drive from the
corresponding regions. Each data drive in an aggregate
contributes one bucket that is filled starting from the top
of the AA. By using AAs to find empty regions of disk,
WAFL increases the probability of full stripe writes that
do not require RAID parity reads (objective 1) and also
make it possible to allocate consecutive blocks of a file
to consecutive blocks (objective 2).

Once a cleaner thread consumes all VBNs within a
bucket, it is placed on the used buckets queue using the
PUT operation. Returned buckets are then refilled with
the next chunk-worth of VBNs from the corresponding
drive as selected by the infrastructure. White Alligator
maintains a lock-protected set of buckets called a bucket
cache and keeps this list non-empty to ensure that the
GET operation does not block. Only after the buckets
from all drives in an aggregate have been used and
refilled with VBNs are they collectively put back into
the bucket cache for allocation by cleaner threads. This
synchronized insertion process ensures equal progress
on each drive and exploits the bandwidth provided
by each drive (objective 3). When all VBNs from an
AA have been used, a new AA is selected from the
same RAID group. Figure 3 shows a simplified example
aggregate with two RAID groups and five data drives. A
version of this infrastructure is reused to write allocate
Virtual VBNs within FlexVol volumes.

E. Tetris Processing

A tetris is the unit of write I/O in WAFL. Logically,
it is a collection of blocks whose width is equal to the
number of drives in the RAID group and whose depth
is the desired write I/O size per drive. In other words,
it is a contiguous collection of stripes. White Alligator
maintains a corresponding in-core tetris data structure



Fig. 3: An Allocation Area (AA) from each RAID group is
divided up to refill per-drive buckets. The buckets from all
RAID groups of an aggregate are placed in the bucket cache.
The tetris structure gets filled with blocks as the buckets are
used by the write allocator.

to track when the I/O is ready to be sent, i.e., when
all free VBNs from the tetris have been assigned to
buffers. As discussed in Section IV-A, each buffer that
is write allocated by a cleaner thread is enqueued to the
tetris by the USE operation. The tetris structure tracks
lists of recently cleaned buffers on a per-drive basis.
Locking is not required when enqueuing buffers to the
tetris because the cleaner thread that owns a bucket
has exclusive access to the corresponding drive in the
current tetris at that instant. Each tetris also maintains
a reference count of its outstanding buckets that is
atomically decremented by the USE operation. When
this reference count drops to zero, an I/O is constructed
and sent to RAID for writing to persistent storage.

V. PERFORMANCE ANALYSIS

This section presents a quantitative analysis of the
White Alligator architecture to show how it scales in
various dimensions. The benefits of the parallelized
write allocation are evaluated using benchmarks on
storage servers running Data ONTAP version 9.2, which
shipped in 2017. Although this release contains several
improvements, the fundamental White Alligator design
has remained the same.

A. Core Scalability

A major advantage of the new architecture is the in-
dependent parallelization of the infrastructure and the
cleaner threads. To demonstrate the scalability achieved
by White Alligator, we analyze the results of write-
intensive workloads (sequential write and random write)
from Fibre Channel clients on a current mid-range

Fig. 4: Throughput per client and core usage (write allocation
work and total) with each combination of parallel cleaner
threads and infrastructure being enabled and disabled.

Fig. 5: Throughput per client and core usage (cleaner threads
and total) as the number of cleaner threads is increased.

system, an Intel Ivy Bridge dual-socket platform with
10 cores per socket and all SSD drives. Write workloads
produce the maximum load on the write allocation
infrastructure to find new VBNs, since all writes require
VBN allocations, and to free VBNs of overwritten
blocks. In these experiments, we used an instrumented
kernel with serialized cleaner threads and/or infrastruc-
ture to be able to isolate the impact of parallelization.

1) Sequential Write: Figure 4 presents the results of
a sequential write workload with four permutations of
cleaner thread and infrastructure parallelization enabled.
The figure shows that parallelizing the infrastructure and
cleaner threads each individually demonstrate 7% and
82% gains in I/Os per second throughput, respectively.
Parallelizing both achieves 274% higher throughput
and saturates all cores in the system, with 6.23 cores
performing write allocation work. Clearly, sequential
write is more limited by VBN assignment load in
cleaner threads, but both components represent major
bottlenecks. Write allocation core usage caps around six
cores (i.e., 2.35 infrastructure + 3.88 cleaner threads)
because Data ONTAP employs pipelined parallelization
and cores are used in proportion to write allocation load.
That is, using a total of six cores for write allocation
on this system is the sweet spot, beyond which cores
would be taken away from other important tasks.

Figure 5 presents the impact of increasing numbers



Fig. 6: Throughput per client and core usage (infrastructure
and total) with and without infrastructure parallelization.

Fig. 7: Throughput per client and core usage (write allocation
work and total) with each combination of parallel cleaner
threads and infrastructure being enabled and disabled.

of cleaner threads in the presence of a parallelized
infrastructure. In the sequential write workload, adding
cleaner threads yields a nearly linear increase in system
throughput up to the point when system CPUs are
saturated and can absorb no additional work. Core usage
within the infrastructure goes from 0.94 cores to 2.35
cores as a result of infrastructure parallelization, as
shown in Figure 6. This boost in computational band-
width signifies an increased ability to process allocation
metafiles and translates into an increased capacity to
handle client load, yielding a 106% rise in throughput.

2) Random Write: The experiment just described was
repeated on the same platform with a random write
workload, which places different pressure on the use of
infrastructure and cleaner threads, as shown in Figure 7.
The figure shows that parallelizing the infrastructure
in this case carried the greater advantage with a 25%
benefit in throughput, compared to a 14% improvement
from parallelizing cleaner threads. This inverted result
reveals that random write is more limited by the pro-
cessing in the infrastructure. In particular, a random
write workload results in block frees that are randomly
distributed in the VBN space. Since allocation metafiles
are indexed by VBN, this randomness causes a higher
ratio of metafile block updates than does sequential
write, in which the updates are concentrated within
fewer metafile blocks. This places increased pressure on

Fig. 8: Throughput per client at the peak load and latency at a
lower load that represents the “knee” of the scalability curve.

the infrastructure to keep up with the load of block frees.
In contrast, block frees during sequential write are more
efficient and create more pressure on inode cleaning, as
seen in the earlier results. Collectively, parallelization
of both components yields a gain of 50%.

In both workloads, White Alligator was able to scale
to many cores. In each case, all cores in the system
were saturated, which indicates that CPU availability
had become the bottleneck and suggests that White
Alligator will be able to scale even further on future
platforms with more cores.

B. Dynamic Number of Cleaner Threads

While workloads like sequential write with heavy inode
cleaning demands benefit from several cleaner threads,
less write allocation intensive workloads may see a
performance degradation with too many cleaner threads.
More threads come with additional lock contention
accessing shared data structures (e.g., bucket caches),
increased thread management overhead, and excessive
CPU consumption that takes resources away from other
work. Because no single number of threads is best in all
cases, WAFL dynamically tunes the number of cleaner
threads in use based on the observed workload patterns.
Additional threads are activated when cleaner thread
utilization exceeds some threshold and are deactivated
below another (e.g., 90% and 50%).

Figure 8 shows the throughput achieved at peak load
and the latency achieved at off-peak load for an internal
OLTP benchmark from clients connected via Fibre
Channel with increasing numbers of cleaner threads.
Specifically, we look at the latency at the “knee” of the
scalability curve, beyond which increases in load cause
disproportional increases in latency [11]. Considering
performance at off-peak load is important because many
customers operate their systems below saturation in
order to: (1) achieve lower latencies and (2) leave
headroom to absorb load from a high-availability partner
system in the case of a failure. The testbed was a 20-



Fig. 9: Throughput per client vs. latency at increasing levels
of client load. Lower and to the right is better.

core system with a combination of SSD and hard drives,
using NetApp Flash Pool® technology. It is apparent
that single-threaded cleaning is unable to keep up with
cleaning load, because adding a second thread increases
peak throughput and decreases off-peak latency. How-
ever, using more than two threads increases latency and
reduces throughput by 3% as a result of added overhead.
The dynamical tuning of the number of threads strikes
the optimal balance.

Dynamic optimization occurs every 50ms in order to
quickly respond to changes in workload. Such a fine
granularity allows the system to react quickly to changes
in the incoming client load and progress of the clean-
ing work. Figure 9 plots throughput versus latency
at increasing levels of load using different numbers
of cleaner threads for sequential write configuration
described earlier. While peak throughput is achieved
with four threads, lower latency is achieved at off-peak
load with only three threads. Dynamic tuning achieves
lower latency at 300MB/sec per client compared to
four threads and exceeds the performance of any static
number of threads at higher load by using fewer threads
for short intervals with reduced cleaning work.

C. Batched Inode Cleaning

Batched inode cleaning allows multiple inodes to be
associated with a single message in cases when the dirty
inodes each has few dirty buffers, in order to reduce
the message processing overhead. This allows large
numbers of inodes to be cleaned with reduced overhead.
We ran an internal benchmark with a mix of NFSv3
operations that includes reads, writes, and metadata
operations across a large number of inodes on a 20-core
storage server with SAS hard drives, with and without
batching enabled. The use of batching simultaneously
improves throughput from 21.2K ops/s to 22.0K ops/s
per client and reduces latency from 6.7ms to 6.5ms. As
discussed earlier, we also handle the opposite scenario
wherein many writes happen to a small number of files

by allowing individual inodes to be processed in parallel
by multiple cleaner threads. We do not present these
results due to space limitations.

VI. RELATED WORK

Operating system scalability for multicore systems has
been the subject of extensive research. Much of this
work has emphasized minimizing the use of shared
memory in the operating system in favor of message
passing between cores that are dedicated to specific
functionality [12], [13], [14], [15], [16]. Such designs
allow scaling to many-core systems; however, their new
designs cannot be easily adopted in legacy systems.

A recent investigation [6] found that write-intensive
workloads scale poorly on modern file systems due to
contention for shared objects and coordinated accesses
to file system metadata, such as allocation bitmaps. Min,
et al. [4] analyzed the scalability of five production
file systems and found many bottlenecks, including
some that may require core design changes. Another
study [3] demonstrated scalability bottlenecks in track-
ing reference counts to mounted file system objects. To
circumvent this issue, they proposed “sloppy counters”
to allow reference counts to be taken per-core rather
than synchronizing them globally. This proposal is very
similar to our approach to “loose accounting” that
batches global counter updates, which is also similar to
distributed objects [17]. All of these investigations find
major scalability issues, but White Alligator is able to
scale write allocation to many cores.

Other scalability work leverages the fact that operating
systems scale well to small core counts by running
multiple OS instances within virtual machines in a
many-core system to mitigate contention for shared
data structures within each OS instance [18], [19]. Cer-
berus [19] gives each VM a dedicated storage partition
with a private file system.

In a similar way, MultiLanes [5] and SpanFS [6] create
independent virtualized storage devices to eliminate
contention for shared resources in the storage stack.
MultiLanes instantiates a collection of VMs and each
VM runs its own file system on a virtualized storage
device with a dedicated I/O stack. Disk writes from
each VM bypass the host file system, which eliminates
contention on global kernel data structures and locks.
SpanFS partitions files and directories into “domains,”
each with dedicated file system services to allow concur-
rent access without contending for globally shared re-
sources. Each domain has independent persistent struc-
tures, in-memory data structures, and kernel services
so that writes to different domains are parallelized.
Their method also parallelizes buffer cache operations,



which is something we have previously explored [20].
IceFS [7] creates partitions (called “cubes”) in the file
system to house different files and directories. Their
main objective is to provide fault tolerance, but they also
log transactions per cube to enable parallel transaction
commits. Because we support multiple cleaner threads
per file, our work increases parallelism in single-file
workloads compared to mapping files to partitions.
Silicon Graphic’s XFS [21] divides the available storage
into multiple allocation groups that are managed indi-
vidually to increase parallelism. The Fast File System
[22] divides media into cylinder groups to increase
performance, but the resulting layout naturally supports
concurrency. NOVA [23] is a log-structured file system
designed to exploit nonvolatile memories that allows
synchronization-free concurrency on different files.

VII. CONCLUSION

In this paper, we have presented the White Alligator
architecture for scalable write allocation in the WAFL
file system. White Alligator facilitates scaling to many
cores by creating a clear division between the write
allocation infrastructure that reads and manipulates file
system metadata and a set of inode cleaner threads
that perform the actual assignment of VBNs to dirty
data. White Alligator leverages buckets of VBNs to
amortize the overhead of VBN allocation and minimize
the synchronization overhead. The resulting system sig-
nificantly improves CPU scaling and demonstrates per-
formance improvements of up to 274% over serialized
write allocation. Further, this paper offers insight into
the internal workings of the WAFL file system and its
write allocation technology and presents the evolution of
parallelism within this subsystem. This work is evidence
that, contrary to conventional wisdom, a traditional file
system design can scale to many cores, with the right
architecture in place.
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